Interaction between domain-specific and domain-general abilities in math´s competence

  • Sandra Torresi Universidad Favaloro, Buenos Aires, Argentina

Abstract

This article is an approach to some viewpoints about interactions between domain-specific and general cognitive tools involved in the development of mathematical competence. Many studies report positive correlations between the acuity of the numerical approximation system and formal mathematical performance, while another important group of investigations have found no evidence of a direct connection between non-symbolic and symbolic numerical representations. The challenge for future research will be to focus on correlations and possible causalities between non-symbolic and symbolic arithmetic skills and general domain cognitive skills in order to identify stable precursors of mathematical competence.

 

Keywords: numerical cognition, cognitive development, approximate number system, working memory

References

Anobile, G., Cicchini, G. M. & Burr, D. C. (2016). Number as a Primary Perceptual Attribute: A Review. Perception, 45(1-2), 5–31. https://doi.org/10.1177/0301006615602599

Ashkenazi, S., Mark-Zigdon, N. & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16(1), 35–46. https://doi.org/10.1111/j.1467-7687.2012.01190.x

Allen, K., Higgins, S. & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: a systematic review. Educational Psychology Review, 31, 1–23. https://doi.org/10.1007/s10648-019-09470-8

Baddeley, A. D. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63,

–29. https://doi.org/10.1146/annurevpsych-120710-100422

Blankenship, T. L., Keith, K., Calkins, S. D. & Bell, M. A. (2018). Behavioral performance and neural areas associated with memory processes contribute to math and reading achievement in 6-year- old children. Cognitive Development, 45, 141–151, https://doi.org/10.1016/j.cogdev.2017.07.002

Bonny, J. W. & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388. https://doi.org/10.1016/j.jecp.2012.09.015

Butterworth, B. (2019). Dyscalculia: from Science to Education. New York: Taylor & Francis. Bugden, S. & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not the automatic processing of Arabic numerals. Cognition, 118(1), 32–44. https://doi.org/10.1016/j.cognition. 2010.09.005

Cantlon, J. F. & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), 2912– 2919. https://doi.org/10.1371/journal.pbio.0050328

Carey, S. (2009). The Origin of Concepts. New York: Oxford Scholarship. https://doi.org/10.1093/acprof:oso/9780195367638.001.0001

Chen, Q. & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. http://doi.org/10.1016/j.actpsy.2014.01.016

Chu, F. W., vanMarle, K. & Geary, D. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. http://dx.doi.org/10.1016/j.jecp.2015.01.006

Clark, C. A. C., Nelson, J. M., Garza, J., Sheffield, T. D., Wiebe, S. A. & Espy, K. A. (2014). Gaining control: Changing

relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period. Frontiers in Psychology, 5, 1–15. https://doi.org/10.3389/fpsyg.2014.00107

Clearman, J., Klinger, V. & Szücs, D. (2017). Visuospatial and verbal memory in mental arithmetic. Quarterly Journal of Experimental Psychology, 70(9), 1837–1855. https://doi.org/10.1080/17470218.2016.1209534

Dehaene, S. (2011). The Number Sense. New York: Oxford University Press.

Desoete, A., Ceulemans, A., De Weerdt, F. & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81. https://doi.org/10.1348/2044-8279.002002

Fanari, R., Meloni, C. & Massidda, D. (2019). Visual and Spatial Working Memory Abilities Predict Early Math Skills: A Longitudinal Study. Frontiers in Psychology, 10, 1–9. https://doi.org/10.3389/fpsyg.2019.02460

Fazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental

Child Psychology, 123, 53–72. http://doi.org/10.1016/j.jecp.2014.01.013

Fritz, A., Haase, V. & Räsänen, P. (Eds.) (2019). International Handbook of Mathematical Learning Difficulties. From the Laboratory to the Classroom. Cham: Springer.

Geary, D. (2011). Cognitive predictors of achievement growth in mathematics: A five-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510

Geary , D., Nicholas, A., Li, Y. & Sun, J. (2017). Development change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: an eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680–693. https://doi.org/10.1037/edu0000159

Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V. & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), 1–9. https://doi.org/10.1371/journal.pone.0067374

Goffin, C., Vogel, S. E., Slipenkyj, M. & Ansari, D. (2020). A comes before B, like 1 comes before 2. Is the parietal

cortex sensitive to ordinal relationships in both numbers and letters? An fMRI-adaptation study. Human Brain

Mapping, 41(6), 1591–1610. https://doi.org/10.1002/hbm.24897

Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q. & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120. http://doi.org/10.1073/pnas.1200196109

Hellstrand, H., Korhonen, J. Räsänen, P., Linmmanmaku, K. & Aunio, P. (2020). Reliability and validity evidence of the early numeracy test for identifying children at risk for mathematical learning difficulties. International Journal of Educational Research, 102, 1–10. https:/ doi.org/10.1016/j.ijer.2020.101580

Honoré, N. & Noël, M. P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PloS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166685

Hornung, C., Schiltz, C., Brunner, M. & Martin, R. (2014). Predicting firstgrade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 1–18 https://doi.org/10.3389/fpsyg.2014.00272

Izard, V., Sann, C., Spelke E. S. & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–1038. https://doi.org/10.1073/

pnas.0812142106

Kuzmina, Y., Tikhomirova, T., Lysenkova, I. & Malykh, S. (2020). Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary

school children. PLoS ONE, 15(2), 1–23. https://doi.org/10.1371/journal.pone.0228960

LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J. Kamawar, D. & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6),

–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.x

Libertus, M. E., Feigenson, L. & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–300. https://doi.org/10.1111/ j.1467-7687.2011.01080.x

Libertus, M. E., Odic, D., Feigenson, L. & Halberda, J. (2020). Effects of Visual Training of Approximate Number

Sense on Auditory Number Sense and School Math Ability. Frontiers in Psychology, 11, 1–16. https://doi.org/10.3389/fpsyg.2020.02085

Lindskog, M., Winman, A. & Juslin, P. (2014). The association between higher education and approximate number system acuity. Frontiers in Psychology, 5, 1–10. https://doi.org/10.3389/fpsyg.2014.00462

Mammarella, I. C., Caviola, S., Giofrè, D. & Szücs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 36(2), 220–235. https://doi.org/10.1111/bjdp.12202

Matejko, A. A. & Ansari, D. (2016). Trajectories of Symbolic and Non-symbolic Magnitude Processing in the First Year of Formal Schooling. PLOS ONE, 11(3), 1–15. http://doi.org/10.1371/journal.pone.0149863

Mazzocco. M. M., Feigenson, L. & Halberda, J. (2011). Impairs acuity of the approximate number system underlines mathematical learning disability (Dyscalculia). Child Development, 82(4), 1224–1237. https://doi.

org/10.1111/j.1467-8624.2011.01608.x

Nieder, A. (2019). A brain for numbers. The biology of the number instinct. Cambridge: MIT Press.

Nieder, A. & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185–

https://doi.org/10.1146/annurev.neuro.051508.135550

Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J. & Content, A. (2013). Does math education modify

the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and

Education. 2(1), 13–22. https://doi.org/10.1016/j.tine.2013.01.001

Park, J. & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation

of underlying mechanism. Cognition, 133(1), 188–200. https://doi.org/10.1016/j.cognition.2014.06.011

Piazza, M. (2010). Neurocognitive startup tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551. https://doi.org/10.1016/j.tics.2010.09.008

Piazza, M. & Izard, V. (2009). How humans count: numerosity and the parietal cortex. The Neuroscientist,

(3), 261–273. https://doi.org/10.1177/1073858409333073

Purpura, D. J. & Ganley, C. M. (2014). Working memory and language: Skillspecific or domain-general relations to

mathematics? Journal of Experimental Child Psychology, 122, 104–121. https://doi.org/10.1016/j.jecp.2013.12.009

Rapin, I. (2016). Dyscalculia and the calculating brain. Pediatric Neurology, 61, 11–20. https://doi.org/10.1016/j.pediatrneurol.2016.02.007

Revkin, S. K., Piazza, M., Izard, V., Cohen, L. & Dehaene, S. (2008). Does subitizing reflect numerical estimation?

Psychological Science, 19(6), 607–614. https://doi.org/10.1111/j.1467-9280.2008.02130.x

Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of nonsymbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3), 1–16. http://doi.org/10.1111/desc.12372

Siemann, J. & Petermann, F. (2018). Innate or Acquired? Disentangling number sense and early number competencies.Frontiers in Psychology, 9, 1–13. https://doi.org/10.3389/fpsyg.2018.00571

Spelke, E. S. (2017). Core Knowledge, Language, and Number. Language Learning and Development, 13(2), 147–170, https://doi.org/10.1080/15475441.2016.1263572

Szkudlarek, E. & Brannon, E. M. (2017).Does the approximate number system serve as a foundation for symbolic mathematics? Language learning and development: the official journal of the Society for Language Development, 13(2), 171–190. https://doi.org/10.1080/15475441.2016.1263573

Träff, L. O., Östergren, R. & Skagerlund, K. (2020). Development of early domain- specific and domain-general cognitive precursors of high and low math achievers in grade 6. Child Neuropsychology, 26(8), 1065–1090. https://doi.org/10.1080/09297049.2020.1739259

Vanbinst, K., Ghesquiere, P., & De Smedt, B. (2012). Numerical magnitude representations

and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129–136. https://doi.org/10.1111/j.1751-228X.2012.01148.x

Xenidou-Dervou I, Van Luit, J. E. H., Kroesbergen, E. H., Friso-van den Bos, I., Jonkman, L. M., Van der Schoot, M.

& Van Lieshout, E. (2018). Cognitive predictors of children’s development in mathematics achievement: a latent growth modeling approach. Developmental Science, 21(6), 1–51. https://doi. org/10.1111/desc.12671

Zhou, X., Wei, W., Zhang, Y., Cui, J. & Chen, C. (2015). Visual perception can account for the close relation between

numerosity processing and computational fluency. Frontiers in Psychology, 6, 1–13. https://doi.org/10.3389/fpsyg.2015.01364

Downloads

Download data is not yet available.
Published
2020-12-07
How to Cite
Torresi, S. (2020). Interaction between domain-specific and domain-general abilities in math´s competence. Journal of Applied Cognitive Neuroscience, 1(1), 43-51. Retrieved from https://revistascientificas.cuc.edu.co/JACN/article/view/3340