Dos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico

  • Marlio Paredes Gutiérrez Universidad del Valle. Cali, (Colombia) - Arizona State University. Tempe, Arizona (Estados Unidos) - Universidad Francisco Gavidia. San Salvador, (El Salvador) https://orcid.org/0000-0002-9375-3743
  • Brenda Carolina Torres Velasquez Universidad del Turabo. Gurabo, Puerto Rico (Estados Unidos)
  • Yashira Marie Sanchez Colon Ponce Health Sciences University. Ponce, Puerto Rico (Estados Unidos) https://orcid.org/0000-0002-3129-561X
  • Fred Charles Schaffner Gibbs Universidad del Turabo. Gurabo, Puerto Rico (Estados Unidos) https://orcid.org/0000-0003-4877-5860

Resumen

Introducción: Laguna Cartagena (LC), es un humedal en Lajas, Puerto Rico, que ha sido afectado negativamente por nutrientes, principalmente escorrentía de fósforo de las actividades agrícolas hasta el final del cultivo de la caña de azúcar a fines del siglo XX. Estas condiciones han propiciado que, la concentración de P permaneciera alta en un estado hipereutrófico, el cual era irremediable incluso después de una reducción de 5 veces en la concentración de nutrientes del agua fuente.

Objetivo: El objetivo principal de este artículo de investigación es aplicar dos métodos matemáticos diferentes para evaluar el nivel de eutrofización de un humedal en Puerto Rico.

Metodología: El Método de Agrupamiento de Grises (GCM) se usó para clasificar el estado eutrófico de LC aplicando los estándares tróficos internacional y chino y dos parámetros, Fósforo Total (TP) y Nitrógeno Total (TN). La media de TP y TN en el sustrato del fondo consolidado de LC y las muestras de floculencia se utilizaron para clasificar LC. Para analizar si LC puede recuperarse, se utilizó fósforo reactivo soluble (SRP) y TP a partir de muestras de agua a la entrada, salida y centro de LC para modelar (ecuación diferencial) la entrada y pérdida de fósforo en LC y determinar si existe un punto

de equilibrio. El análisis GCM clasificó a la LC como un humedal eutrófico utilizando el estándar internacional e hipereutrófico utilizando el estándar chino.

Resultados: La clasificación del estado trófico no presentó variaciones con el uso del sustrato de fondo consolidado versus las muestras de floculencia. El modelo de ecuaciones diferenciales mostró que los niveles de SRP y TP dentro de LC fueron más altos que los niveles de SRP y TP que entran en LC, lo que podría ser causado por un proceso de reciclaje de nutrientes dentro de LC que puede predecir el fracaso de los esfuerzos de remediación. Se encontró un punto de equilibrio a nivel eutrófico, lo que significa que incluso si hay una reducción en la entrada de fósforo, no habrá un cambio en el estado eutrófico de LC.

Conclusiones: El estándar trófico chino indicó que la LC estaba en un estado hipertrófico. Se encontraron resultados similares usando el estándar internacional. El modelo de ecuaciones diferenciales mostró que LC es irreversible.

Palabras clave: Dinámica del fósforo, fósforo total, fósforo soluble reactivo, nitrógeno total, punto de equilibrio, eutrofización, hipereutrofización, método de agrupamiento de grises

Referencias

S. R. Carpenter, N. F. Caraco, D. L. Correll, R. W. Howarth, A. N. Sharpley and V. H. Smith, “Nonpoint pollution of surface waters with phosphorus and nitrogen”, Ecological Applications, vol. 8, no. 3, pp. 559—568, Aug. 1998. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

V. H. Smith, “Eutrophication of freshwater and coastal marine ecosystems: a global problem”, Environmental Science and Pollution Research, vol.10, np.2, pp. 126—139, Mar. 2003. https://doi.org/10.1065/espr2002.12.142

S. R. Carpenter, “Eutrophication of aquatic ecosystems: Bistability and soil phosphorus”, Proceedings of the National Academy of Sciences of Sciences of the United States of America, vol. 102, no. 29, pp. 10002—10005, Jul. 2005. https://doi.org/10.1073/pnas.0503959102

P. M. Vitousek, J. Aber, R. Howarth, G. Likens, P. Matson, D. Schindler, W. Schlesinger and D. Tilman, “Human alteration of the global nitrogen cycle causes and consequences”, Ecological Applications, vol. 7, no. 3, 737—750, Aug. 1997. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

D. L. Correll, “Phosphorus: A rate limiting nutrient in surface waters”, Poultry Science, vol. 78, no. 5, pp. 674—682, May. 1999. https://doi.org/10.1093/ps/78.5.674

C. E. Lovelock, M. C. Ball, K. C. Martin and I. C. Feller, “Nutrient enrichment increases mortality of mangroves”, PloS One, vol. 4, no. 5, p. e5600, May. 2009. https://doi.org/10.1371/journal.pone.0005600

A. A. Ansari, S. S. Gill and F. A. Khan, “Eutrophication: threat to aquatic ecosystems”, in Eutrophication: Causes, consequences and control, pp 143—170, Netherlands: Springer, 2010. https://doi.org/10.1007/978-90-481-9625-8_7

[EPA] Environmental Protection Agency (US), “Protecting Natural Wetlands: A Guide to Stormwater Best Management Practices”, in: National Service Center for Environmental Publications (NSCEP), Washington (DC): Office of Water (US), 1996. Available in https://nepis.epa.gov/Exe/ZyPDF.cgi/200053GQ.PDF?Dockey=200053GQ.PDF

D. L. Correll, “The role of phosphorus in the eutrophication of receiving waters: a review”, Journal of Environmental Quality, vol. 27, no. 2, pp. 261—266, Mar. 1998. https://doi.org/10.2134/jeq1998.00472425002700020004x

L. Volterra, M. Boualam, A. Ménesguen, J. Duguet, J. Duchemin and X. Bonnefoy. (2002). Eutrophication and Health. World Health Organization & European Commission. Luxembourg. [Online]. Available in http://www.ypeka.gr/LinkClick.aspx?fileticket=mb9Q7Nzw5iI%3D&tabid=250&language=el-GR

E. D’Angelo, J. Crutchfield and M. Vandiviere, “Rapid, sensitive, microscale determination of phosphate in water and soil”, Journal of Environmental Quality, vol. 30, no. 6, pp. 2206—2209, Nov. 2001. https://doi.org/10.2134/jeq2001.2206

E. M. Bostic and J. R. White, “Soil phosphorus and vegetation influence on wetland phosphorus release after simulate drought”, Soil Science Society of America Journal, vol. 71, no. 1, pp. 238—244, Jan. 2007. https://doi.org/10.2136/sssaj2006.0137

A. J. Smolders, L. P. Lamers, E. C. Lucassen, G. Van Der Velde and J. G. Roelofs, “Internal eutrophication: How it works and what to do about it – a review”, Chemistry and Ecology, vol. 22, no. 2, pp. 93—111, Jan. 2007. https://doi.org/10.1080/02757540600579730

K. R. Reddy, M. M. Fisher, Y. Wang, J. R. White and J. R. Thomas, “Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake”, Lake and Reservoir Management, vol. 23, no. 1, pp. 27—38, Jan. 2009. https://doi.org/10.1080/07438140709353907

R. G. Wetzel, Limnology: Lake and River Ecosystems. New York, USA: Elsevier Academic Press, 2001.

M. M. Fisher and K. R. Reddy, “Phosphorus flux from wetland soils affected by long-term nutrient loading”, Journal of Environmental Quality, vol. 30, no. 1, pp. 261—271, Jan. 2001. https://doi.org/10.2134/jeq2001.301261x

L. Bartoszek and J. A. Tomaszek, “Phosphorus distribution in the bottom sediments of the Solina-Myczkowce Reservoirs”, Environment Protection Engineering, vol. 33, no. 2, pp. 25—33, 2007. Available http://epe.pwr.wroc.pl/2007/Bartoszek_2-2007.pdf

L. E. Kinsman-Costello, “Effects of water level fluctuations on phosphorus, iron, sulfur, and nitrogen cycling in shallow freshwater ecosystems”, PhD Dissertation, Michigan State University, East Lansing, MI, USA, 2012. Available in https://lter.kbs.msu.edu/pub/3226

M. Sondergaard, P. J. Jensen and E. Jeppensen, “Retention and internal loading of phosphorus in shallow, eutrophic lakes”, The Scientific World Journal, vol. 1, pp. 427—442, Aug. 2001. http://dx.doi.org/10.1100/tsw.2001.72

J. J. González, B. Pérez and E. Fernández, “Analytical phosphorus fractionation in sewage sludge and sediment samples”, Analytical and Bioanalytical Chemistry, vol. 381, no. 4, pp. 873—878, Feb. 2005. https://doi.org/10.1007/s00216-004-2989-z

B. Böstrom, J. M. Andersen, S. Fleisher and M. Jansson, “Exchange of phosphorus across the sediment-water interface,” Hydrobiologia, vol. 170, no. 1, pp. 229—244, 1998. https://doi.org/10.1007/978-94-009-3109-1_14

K. R. Reddy, R. H. Kadlec, E. Flaig and P. M. Gale, “Phosphorus retention in streams and wetlands: a review”, Critical Reviews in Environmental Science and Technology, vol. 29, no. 1, pp. 83—146, Jun. 2010. https://doi.org/10.1080/10643389991259182

S. P. Seitzinger, “Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance”, Limnology and Oceanography, vol. 33, no. 4, pp. 702—724, Jul. 1988. https://doi.org/10.4319/lo.1988.33.4part2.0702

D. L. Saunders and J. Kalff, “Nitrogen retention in wetlands, lakes and rivers”, Hydrobiologia, vol. 433, no. 1, pp. 205—212, Jan. 2001. https://doi.org/10.1023/A:1017506914063

S. L. Whitmire and S. K. Hamilton, “Rapid removal of nitrate and sulfate in freshwater wetland sediments”, Journal of Environmental Quality, vol. 34, no. 6, pp. 2062—2071, Nov. 2005. https://doi.org/10.2134/jeq2004.0483

A. J. Burgin and S. K. Hamilton, “Have we overemphasized the role of denitrification on aquatic ecosystem? A review of nitrate removal pathway”, Frontiers in the Ecology and the Environment, vol. 5, no. 2, pp. 89—96, Mar. 2007. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2

H. Wang, A. Appan and J. S. Gulliver, “Modeling of phosphorus dynamics in aquatic sediments: II-examination of model performance”, Water Research, vol. 37, no. 16, pp. 3939—3953, Sep. 2003. https://doi.org/10.1016/S0043-1354(03)00305-1

P. M. Vitousek and R. W. Howarth, “Nitrogen limitation on land and in the sea: How can it occur?” Biochemistry, vol. 13, no. 2, pp. 87—115, Jan. 1991. https://doi.org/10.1007/BF00002772

V. H. Smith, “Effects of nitrogen: phosphorus supply ratios on nitrogen fixation in agricultural and pastoral ecosystems”, Biogeochemistry, vol. 18, no. 1, pp. 19-35, Feb. 1992. https://doi.org/10.1007/BF00000424

K. Reddy, E. M. D’Angelo and W. G. Harris, “Biochemistry of Wetlands”, in: Handbook of Soil Sciences, CRC Press, New York, pp. G89—G119, 2000.

Y. M. Sánchez-Colón, “Effect of water level fluctuations and rainfall on phosphorus release and binding at a tropical freshwater wetland (Laguna Cartagena, PR)”, M.S. Thesis, Dept. Ciencia y Tecnología, Univ. del Turabo, Gurabo, Puerto Rico, 2012.

L. Zhou and S. Xu, “Application of Grey Clustering Method in eutrophication assessment of wetland”, Journal of American Science, vol. 2, no. 4, pp. 53—58, 2006.

[EPA] Environmental Protection Agency (US), “Nutrient Criteria Technical Guidance Manual: Rivers and Streams”, in: Office of Water and Office of Science and Technology, 2008. Available in http://www.tampabay.wateratlas.usf.edu/upload/documents/NutrientCriteriaTGMRiversStreams.pdf Accessed 08 Dec 2016.

W. K. Dodds, J. R. Jones and E. B. Welch, “Suggested classification of stream trophic state: distributions of temperature stream types by chlorophyll, total nitrogen and phosphorus”, Water Research, vol. 32, no. 5, pp. 1455—1462, Mar. 1998. https://doi.org/10.1016/S0043-1354(97)00370-9

S. R. Carpenter, D. Ludwig and W. A. Brock, “Management of eutrophication for lakes subject to potentially irreversible change”, Ecological Applications, vol. 9, no. 3, pp. 751-771, Aug. 1999. https://doi.org/10.1890/1051-0761(1999)009[0751:MOEFLS]2.0.CO;2

V. H. Smith, G. D. Tilman and J. C. Nekola, “Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems”, Environmental Pollution, vol. 100, no. 1, 179—196, Mar. 1999.

American Public Health Association, American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. 21st ed. Baltimore, Maryland, USA: Joint Editorial Board, 2005.

[EPA] Environmental Protection Agency (US), National Pollutant Discharge Elimination System, Nitrite Method 354.1., 1971.

[EPA] Environmental Protection Agency (US), National Pollutant Discharge Elimination System, Nitrate-Nitrite Method 353.2., 1978.

J. L. Deng, “Introduction to Grey System Theory”, The Journal of Grey systems, vol. 1, no. 1, pp. 1—24, Nov. 1989.

J. C. Huang, “The key factor of the internet information technology on the quality of life for the elderly: application of grey system theory”, in: Special Issue on Intelligent Internet Systems. IEEE Advancing Technology for Humanity, no. 33, Dec. 2010. Available in http://ieeesmc.org/newsletters/back/2010_12/main_article2.html

N. Slavek and A. Jović, “Application of Grey System Theory to Software Projects Ranking”, Automatika, vol. 53, no. 3, pp. 284—293, Jan. 2017. https://doi.org/10.7305/automatika.53-3.80

Y. Lin and S. Liu, “A historical introduction to grey systems theory”, in: Systems, Man and Cybernetics, 2004 IEEE International Conference on, vol. 3, pp. 2403—2408, The Hague, Netherlands, 10-13 Oct. 2004. https://doi.org/10.1109/ICSMC.2004.1400689

H. Kuang, D. M. Kilgour and K. W. Hipel, “Grey-bases PROMETHEE II with application to evaluation of source water protection strategies”, Elsevier, Information Sciences, vol. 294, pp. 376—389, Feb. 2015. https://doi.org/10.1016/j.ins.2014.09.035

B. Torres-Velasquez and M. Paredes, “Application of Grey Clustering Method to assess eutrophication in six freshwater Colombian wetlands”, Realidad y Reflexion, vol. 18, no. 47, pp. 147—162, Jun. 2018.

B. Torres-Velasquez, “Two different mathematical approaches to study eutrophication in wetlands: classification of trophic state using Grey System Theory to analyze phosphorus and nitrogen data, and the dynamics of phosphorus using differential equations”, Ph.D. dissertation, Dept. Ciencia y Tecnología, Univ. del Turabo, Puerto Rico, Gurabo, 2016.

R. E. Honrath, "Mass and Energy Balances", in CE251 Environmental Engineering Fundamentals. Michigan Tech. Univ., USA, 1995. Available in http://www.cee.mtu.edu/~reh/courses/ce251/251_notes_dir/node3.html#SECTION00030000000000000000

F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology. New York, USA: Springer, 2012. https://doi.org/10.1007/978-1-4614-1686-9

W. Liu, L. Zhang, J. Zhang, X. Liu, W. Huang, D. Huang and Z. Zheng, “Effects of modified sediments from a eutrophic lake in removing phosphorus and inhibiting phosphatase activity”, Environmental Science and Pollution Research, vol 26, no.2, pp. 1723—1732, Nov. 2018. https://doi.org/10.1007/s11356-018-3754-8

Y. M. Sánchez-Colón, “Identifying nonpoint sources of phosphorus (P) and nitrogen (N) pollution and dynamics, internal eutrophication and anoxia variability at a tropical freshwater wetland (Laguna Cartagena, Puerto Rico)”, Ph.D. Dissertation, Dept. Ciencia y Tecnología, Univ. del Turabo, Puerto Rico, Gurabo, 2015.

D. J. Conley, H. W. Paerl, R. W. Howarth, D. F. Boesch, S. P. Seitzinger, K. E. Havens, C. Lancelot and G. E. Likens, “Controlling eutrophication: nitrogen and phosphorus”, Science, vol. 323, no. 5917, pp. 1014—1015, Feb. 2009. https://doi.org/10.1126/science.1167755

D. P. Hamilton, N. Salmaso and H. W. Paerl, “Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus load”, Aquatic Ecology, vol 50, no. 3, pp 351—366, Sept. 2016. https://doi.org/10.1007/s10452-016-9594-z

Descargas

La descarga de datos todavía no está disponible.

Acerca de los Autores

Marlio Paredes Gutiérrez, Universidad del Valle. Cali, (Colombia) - Arizona State University. Tempe, Arizona (Estados Unidos) - Universidad Francisco Gavidia. San Salvador, (El Salvador)

received a bachelor’s degree (1984) and a master’s degree (1991) in mathematics from Universidad del Valle and his PhD Degree in Mathematics from State University of Campinas, Brazil, in 2000. From October 2014 to April 2015 he did a postdoctoral stay at Uppsala University in Sweden, working on an applied mathematics project. He is professor and researcher in the Department of Mathematics at Universidad del Valle, Cali, Colombia. His research interests include applied mathematics, mathematical modeling, differential geometry and combinatorics. https://orcid.org/0000-0002-9375-3743

Brenda Carolina Torres Velasquez, Universidad del Turabo. Gurabo, Puerto Rico (Estados Unidos)

recieved the B.Eng. in Statistical Computing in 2005 from the Escuela Superior Politécnica del Litoral (Guayaquil, Ecuador); a master’s degree in Statistics from Universidad de Puerto Rico ( Mayaguez, Puerto Rico) in 2009; and a doctoral degree in Environmental Sciences from Universidad del Turabo ( Gurabo, Puerto Rico) in
2017. His research interests include statistics applied to public health, epidemiology; disease outbreaks;
environmental sciences; biology problems; water pollution; eutrophication

Yashira Marie Sanchez Colon, Ponce Health Sciences University. Ponce, Puerto Rico (Estados Unidos)

is PhD, Environmental Science, Universidad del Turabo, Gurabo, Puerto Rico. Her interests include the monitoring of aquatic ecosystems, especially nutrient concentrations and eutrophication in freshwater wetlands and issues related to both the Clean Water Act and Drinking Water Act. The prevention and assessment of health effects from environmental exposures are focal areas of Dr Sánchez’ ongoing research interests. https://orcid.org/0000-0002-3129-561X

Fred Charles Schaffner Gibbs, Universidad del Turabo. Gurabo, Puerto Rico (Estados Unidos)

received the Ph.D. degree in environmental biology from University of Miami in 1988. He is Full Professor of Departamento de Ciencias Naturales y Tecnología, Universidad del Turabo. Gurabo, Puerto Rico, United States. His research interests include environmental issues, ecology and evolution, avian ecology and conservation biology. https://orcid.org/0000-0003-4877-5860

Publicado
2019-03-22
Cómo citar
Paredes Gutiérrez, M., Torres Velasquez, B., Sanchez Colon, Y., & Schaffner Gibbs, F. (2019). Dos métodos matemáticos para estudiar la eutrofización por fósforo de un humedal en Puerto Rico. INGE CUC, 15(1), 63-76. https://doi.org/10.17981/ingecuc.15.1.2019.06
Sección
ARTÍCULOS