Propiedades fisicomecánicas, desempeño y durabilidad de morteros geopoliméricos a base de puzolana natural tipo piedra pómez

Resumen

Introducción: En los últimos años, los investigadores han estado evaluando el uso potencial de una amplia gama de materias primas en la producción de geopolímeros. Este trabajo reporta la conveniencia de utilizar una puzolana natural tipo piedra pómez de Paipa (Colombia) como material de sustitución del cemento (100% de puzolana) en la producción de morteros geopoliméricos.  

Objetivo: El objetivo de esta investigación se enfoca en el uso de la piedra pómez como materia prima en la producción de cementos geopoliméricos con el fin de establecer su comportamiento mecánico y durabilidad.

Metodología: Se utilizaron cemento Portland tipo I, puzolana natural y arena como materiales de partida en la preparación de morteros geopoliméricos a partir de la activación alcalina de puzolana natural. Los morteros geopoliméricos fueron preparados y ensayados según las normas del Instituto Colombiano de Normas Técnicas e Instituto Nacional de Vías.  

Resultados: Los ensayos en geopolímeros ofrecen resultados alentadores y muestran un buen potencial en la preparación de cemento con puzolana exhibiendo una adecuada durabilidad y resistencia a la compresión relativamente alta a los 28 días para ser aceptado en el desarrollo de nuevos materiales cementantes.

Conclusiones: El uso de puzolana natural en la producción de geopolímeros se vuelve importante por su papel en la durabilidad del mortero en condiciones ambientales extremas y agresivas.

Palabras clave: Geopolímeros, piedra pómez, puzolana natural, cemento, morteros

Referencias

R. Mejía, S. Delvasto and R. Talero, “Permeability properties of cement mortars blended with Silica Fume, Fly Ash, and Blast Furnace Slag”, Marine Corrosion in Tropical Environments, ASTM STP 1399, pp. 190-196, Jan. 2000. https://doi.org/10.1520/STP13562

J.S. Coutinho, “The combined benefits of CPF and RHA in improving the durability of concrete structures”, Cement and Concrete Composites, vol. 25, pp. 51–59, Jan. 2003. https://doi.org/10.1016/S0958-9465(01)00055-5

E. Gartner, “Industrially interesting Approaches to low CO2 Cements”, Cement and Concrete Research, vol. 34, pp. 1489-1498, Sep. 2004. https://doi.org/10.1016/j.cemconres.2004.01.021

F. Puertas, A. Barra, M.F. Gazulla, M.P. Gomez, M. Palacios and S. Martínez-Ramírez, “Ceramic wastes as raw materials in Portland cement clinker fabrication: characterization and alkaline activation”, Materiales de Construcción, vol. 56, no. 281, pp. 73-84, Jan. 2006. https://doi.org/10.3989/mc.2006.v56.i281.94

M.C.G. Juenger, F. Winnefeld, J.L. Provis and J.H. Ideker, “Advances in alternative cementitious binders”, Cement and Concrete Research, vol. 41, no. 12, pp. 1232–1243, Dec. 2011. https://doi.org/10.1016/j.cemconres.2010.11.012

A.B. Kizilkanat, D. Oktay, N. Kabay and M.M. Tufekci, “Comparative Experimental Study of Mortars Incorporating Pumice Powder or Fly Ash”, Journal of Materials in Civil Engineering, vol. 28, no. 2, 04015119, Feb. 2016. https://doi.org/10.1061/ (ASCE)MT.1943-5533.000140

L. Kaizhi, R. Yu, Z. Shui, X. Li and S. Wu, “Optimization of autogenous shrinkage and microstructure for Ultra-High Performance Concrete (UHPC) based on appropriate application of porous pumice”, Construction and Building Materials, Vol. 214, 30, pp. 369-381, Jul. 2019. https://doi.org/10.1016/j.conbuildmat.2019.04.089

A.M. Zeyad, A.H. Khan and B.A. Tayeh, “Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers”, Journal of Materials Research and Technology, Vol. 9, no. 1, pp. 806-818. Jan. 2020. https://doi.org/10.1016/j.jmrt.2019.11.021

J. Sanjayan and B. Sioulas, “Strength of slag-cement cured in place and in other conditions”, ACI Materials Journal, vol. 97, no. 5, pp. 603-611, Sep. 2000. Available: https://www.worldcat.org/title/aci-materials-journal/oclc/13846872

T.W. Cheng and J.P. Chiu, “Fire-resistant geopolymer produced by granulated blast furnace slag”, Minerals Engineering, vol. 16, no. 3, pp.205–210. Mar. 2003. https://doi.org/10.1016/S0892-6875(03)00008-6

A. Karthik, K. Sudalaimani, C.T. Vijayakumar and S.S. Saravanakumar, “Effect of bio-additives on physico-chemical properties of fly ash-ground granulated blast furnace slag based self-cured geopolymer mortars”, Journal of Hazardous Materials, Vol. 361, pp. 56-63, Jan. 2019. https://doi.org/10.1016/j.jhazmat.2018.08.078

J.C. Swanepoel and C.A. Strydom, “Utilization of fly ash in a geopolymeric material”, Applied Geochemestry, vol. 17, no. 8, pp. 1143-1148. Aug. 2002. https://doi.org/10.1016/S0892-6875(03)00008-6

T. Bakharev, “Geopolymeric materials prepared using Class F fly ash and elevated temperature curing”, Cement and Concrete Research, vol. 35, no. 6, pp. 1224-1232, Jun. 2005. https://doi.org/ 10.1016/j.cemconres.2004.06.031

A. Fernández-Jimenez and A. Palomo, “Composition and microstructure of alkali activated fly ash binder: Effect of the activator”, Cement and Concrete Research, vol. 35, no. 10, pp. 1984-1992, Oct. 2005. https://doi.org/10.1016/j.compositesb.2018.11.067

G. Kürklü and G. Görhan, “Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production”, Construction and Building Materials, Vol. 217, pp. 498-506, Aug. 2019. https://doi.org/10.1016/j.conbuildmat.2019.05.104

A. Wongsa, R. Kunthawatwong, S. Naenudon, V. Sata and P. Chindaprasirt, “Natural fiber reinforced high calcium fly ash geopolymer mortar”. Construction and Building Materials, Vol. 241, 118143, Apr. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118143

P.H. Shih and S. Yokohama, “Behaviour of chloride ions in hardened ecocement: New type of Portland cement made from municipal waste incinerator ash” 2003, 11th ICCC, Durban, 1271-1281.

F. Puertas, M.T. Blanco-Varela and T. Vazquez, “Behaviour of cement mortars containing an industrial waste from aluminum refining. Stability in Ca(OH)2 solutions”, Cement and Concrete Research, vol. 29, no. 10, pp-1673-1680, Oct. 1999. http://dx.doi.org/10.1016/S0008-8846(99)00157-X

C. Leiva, Y. Luna-Galiano, C. Arenas, B. Alonso-Fariñas and C. Fernández-Pereira, “A porous geopolymer based on aluminum-waste with acoustic properties”, Waste Management, Vol. 95, pp. 504-512, Jul. 2019. https://doi.org/10.1016/j.wasman.2019.06.042

A. Hauser, U. Eggenberger and T. Mumenthaler, “Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete”, Cement and Concrete Research, vol. 29, no.3, pp. 297-302, Mar. 1999. https://doi.org/10.1016/S0008-8846(98)00207-5

M. Keppert, E. Vejmelková, P. Bezdička, M. Doleželová , M. Čáchová, L. Scheinherrová, J. Pokorný, M. Vyšvařil, P. Rovnaníková and R. Černý, “Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content”, Applied Clay Science, Vol. 161, pp. 82-89, Sep. 2018. https://doi.org/10.1016/j.clay.2018.04.019

M. Singh and M. Garg, “Making of anhydrite cement from waste gypsum”, Cement and Concrete Research, vol. 30, no. 4, pp. 571-577, Abr. 2000. https://doi.org/ 10.1016/S0008-8846(00)00209-X

F. Pacheco-Torgal, J. Castro-Gomes and S. Jalali, “Properties of tungsten mine waste geopolymeric binder”, Construction and Building Materials, vol. 22, no. 6, pp. 1201-1211, Jun. 2008. https://doi.org/10.1016/j.conbuildmat.2007.01.022

P. Soares, A.T. Pinto, V.M. Ferreira and A.J. Labrincha, “Geopolymerization of lightweight aggregate waste”, Materiales de Construcción, vol. 58, no. 291, pp. 23-34, Jul. 2008. https://doi.org/10.3989/mc.2008.v58.i291.105

A. Gharzouni, B. Samet, S. Baklouti, E. Joussein and S. Rossignol, “Addition of low reactive clay into metakaolin-based geopolymer formulation: Synthesis, existence domains and properties”, Powder Technology, Vol. 288, pp. 212-220, Jan. 2016. https://doi.org/10.1016/j.powtec.2015.11.012

N. Hamdi, I.B. Messaoud and E. Srasra, “Production of geopolymer binders using clay minerals and industrial wastes”, Comptes Rendus Chimie, Vol. 22, no. 2–3, pp. 220-226, Feb. 2019. https://doi.org/10.1016/j.crci.2018.11.010

İ. Ustabaş and A. Kaya, “Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag”, Construction and Building Materials, Vol. 164, pp. 297-307, Mar. 2018. https://doi.org/10.1016/j.conbuildmat.2017.12.185

S. Top, H. Vapur, M. Altiner, D. Kaya and A. Ekicibil, “Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates”, Journal of Molecular Structure, Vol. 1202, 127236, Feb. 2020. https://doi.org/10.1016/j.molstruc.2019.127236

N. Eroshkina and M. Korovkin, “The Effect of the Mixture Composition and Curing Conditions on the Properties of the Geopolymer Binder Based on Dust Crushing of the Granite”, Procedia Engineering, Vol. 150, 1605-1609, Jan. 2016. https://doi.org/10.1016/j.proeng.2016.07.137

K.M.A. Hossain, “Properties of volcanic pumice based cement and lightweight concrete”, Cement and Concrete Research, vol. 34, no. 2, pp. 283–291, Feb. 2004. https://doi.org/ 10.1016/j.cemconres.2003.08.004

J. Davidovits, “Soft Minerallurgy and Geopolymers”, Proceedings of the 1st International Conference on Geopolymer, Compiegne, France, June 1–3, 1988.

J.G.S. Van Jaarsveld and J.S.J. Van Deventer and L. Lorenzen, “Factors affecting the immobilization of metals in geopolymerized fly ash” Metallurgical and Materials Transactions B, vol. 29, no. 1, pp. 283-291, Feb. 1998. https://doi.org/10.1007/s11663-998-0032-z

T. Bakharev, “Durability of geopolymer materials in sodium and magnesium sulfate solutions”, Cement and Concrete Research, Vol. 35, no. 6, pp. 1233–1246, Jun. 2005. https://doi.org/10.1016/j.cemconres.2004.09.002

D.L.Y. Kong, J.G. Sanjayan and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures”, Cement and Concrete Research, Vol. 37, no. 12, pp. 1583–1589, Dec. 2007. https://doi.org/10.1016/j.cemconres.2007.08.021

X. Guo, H. Shi and W.A. Dick, “Compressive strength and microstructural characteristics of class C fly ash geopolymer.” Cement and Concrete Composites, Vol. 32, no. 2, pp. 142–147, Feb. 2010. https://doi.org/10.1016/j.cemconcomp.2009.11.003

M. Jin, F. Lian, R. Xia and Z. Wang, “Formulation and durability of a geopolymer based on metakaolin/tannery sludge”, Waste Management, Vol. 79, pp. 717-728, Sep. 2018. https://doi.org/10.1016/j.wasman.2018.08.039

M. Vafaei, A. Allahverdi, P. Dong and N. Bassim, “Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration”, Construction and Building Materials, Vol. 193, pp. 363-372, Dec. 2018. https://doi.org/10.1016/j.conbuildmat.2018.10.203

Instituto Colombiano de Normas Técnicas – ICONTEC, “Método de ensayo para determinar la finura del cemento hidráulico por medio de los tamices 75 µm (M200) y 150 µm (M100)”, Norma Técnica Colombiana NTC 226, 1998. Disponible: https://www.coursehero.com/file/41268695/NTC226PDF/

Instituto Nacional de Vías – INVIAS, “Gravedad específica y absorción de agregados finos”, Norma INV E-222, 2007. Disponible: https://es.slideshare.net/UCGcertificacionvial/gravedad-especfica-y-absorcin-de-agregado-fino

Instituto Nacional de Vías – INVIAS, “Análisis granulométrico de suelos por tamizado”, Norma INV E-123, 2007. Disponible: http://www.lms.uni.edu.pe/labsuelos/MODOS%20OPERATIVOS/Analisis%20granulometrico%20por%20tamizado.pdf

Instituto Nacional de Vías – INVIAS, “Valor de azul de metileno en agregados finos y en llenante mineral”, Norma INV E-235, 2007. Disponible: https://es.scribd.com/document/111282589/INV-E-235-07-Azul-de-Metileno

Instituto Colombiano de Normas Técnicas – ICONTEC, “Determinación de la densidad del cemento hidráulico”, Norma Técnica Colombiana NTC 221, 1998. Disponible: https://tienda.icontec.org/wp-content/uploads/pdfs/NTC221.pdf

Instituto Colombiano de Normas Técnicas – ICONTEC, “Método para determinar la resistencia a la compresión de morteros de cemento hidráulico usando cubos de 50 mm de lado”, Norma Técnica Colombiana NTC 220, 1998. Disponible: https://kupdf.net/download/ntc-220-determinacion-de-la-resistencia-de-morteros-de-cemento-hidraulico-usando-cubos-de-50-mm-o-508-mm-de-lado_5b032c61e2b6f5475424a809_pdf

Instituto Colombiano de Normas Técnicas – ICONTEC, “Instruments de pesaje de funcionamiento no automáticos. Requisitos metrológicos y Técnicos. Pruebas”, Norma Técnica Colombiana NTC 2031, 2014. Disponible: https://members.wto.org/crnattachments/2016/TBT/COL/16_1549_01_s.pdf

R. Thenmozhi, R.V. Lakshmi, A.A. Francis and B.M. Meenal, “Strength behaviour of light weight aggregate based geopolymer concrete”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 7, no. 5, pp. 4755-4762, May. 2018. https://doi.org/10.15680/IJIRSET.2018.0705051 4755

K.L. Aughenbaugh, T. Williamson and M.C.G. Juenger, “Critical evaluation of strength prediction methods for alkali-activated fly ash”, Materials and Structures, Vol. 48, no. 3, pp. 607–620, Mar. 2015. https://doi.org/10.1617/s11527-014-0496-z

M.C. Rowe, B.S. Ellis and A. Lindeberg, “Quantifying crystallization and devitrification of rhyolites by means of X-ray diffraction and electron microprobe analysis”, American Mineralogist, Vol. 97, no. 10, pp. 1685-1699, Oct. 2012. https://doi.org/10.2138/am.2012.4006

C.N. Achilles, R.V. Morris, S.J. Chipera, D.W. Ming and E.B. Rampe, “X-ray diffraction reference intensity ratios of amorphous and poorly crystalline phases: Implications for CheMin on the Mars Science Laboratory mission”, Proceedings of the 44th Lunar and Planetary Science Conference, The Woodlands, USA, March 18–22, 2013.

O. Gencel, “Energy and Buildings Characteristics of fired clay bricks with pumice additive”, Energy and Buildings, Vol. 102, pp. 217-224, Sep. 2015. https://doi.org/10.1016/j.enbuild.2015.05.031

M. Malakootian, S. Bahraini, M. Malakootian and M. Zarrabi, “Removal of tetracycline antibiotic from aqueous solutions using natural and modified pumice with magnesium chloride”, Advances in Environmental Biology, Vol. 10, no. 8, pp. 46-56, Sep. 2016. https://doi.org/10.17795/jjhr-37583

M. Heydari, K. Karimyan, M. Darvishmotevalli, A. Karami, Y. Vasseghian, N. Azizi, M. Ghayebzadeh and M. Moradi, “Data for efficiency comparison of raw pumice and manganese-modified pumice for removal phenol from aqueous environments - Application of response surface methodology”, Data in Brief, Vol. 20, pp. 1942-1954, Oct. 2018. https://doi.org/10.1016/j.dib.2018.09.027

L. Gündüz, A. Sariisik, M. Davraz, D. Ugur and O. Cankiran, “Pumice Technology”, Süleyman Demirel University, Isparta, Turkey, 285p, 1998.

L. Gutiérrez de López, “El concreto y otros materiales para la construcción”, Universidad Nacional de Colombia, Manizales, Colombia, 227p, 2003.

K.M.A. Hossain, “Properties of volcanic pumice based cement and lightweight concrete”, Cement and Concrete Research, Vol. 34, no. 2, pp. 283–291, Feb. 2004. https://doi.org/10.1016/j.cemconres.2003.08.004

S. Yazicioğlu and B. Demğrel, “The Effect of the Pumice of Elazığ Region used as a Pozzolanic Additive on the Compressive Strength of Concrete in Increasing Cure Ages”, Fırat University Journal of Engineering Science, Vol. 18, no. 3, pp. 367–374, Jan. 2006.

M.E. Valenzuela, Estudio experimental de las propiedades de geoplímeros sintetizados a partir de puzolana natural Universidad de Chile, Santiago, Chile, 2013.

M.M. Yadollahi, A. Benli and R. Demirboğa, “Effects of elevated temperature on pumice based geopolymer composites”, Plastics, Rubber and Composites, Vol. 44, no. 6, pp. 226-237, Dec. 2015. http://dx.doi.org/10.1179/1743289815Y.0000000020

E. Caballero, W. Sánchez and C.A. Ríos, “Synthesis of geopolymers from alkaline activation of gold mining wastes”, Ingeniería y Competitividad, Vol. 16, no. 1, pp. 317-330, Jan. 2014.

N. Değirmenci and A. Yilmaz, “Use of pumice fine aggregate as an alternative to standard sand in production of lightweight cement mortar”, Indian Journal of Engineering & Materials Sciences, Vol. 18, pp. 61-68, Feb. 2011.

K.M.A. Hossain, “Pumice based blended cement concretes exposed to marine environment: Effects of mix composition and curing conditions”, Cement and Concrete Composites, Vol. 30, no. 2, pp. 97-105, Feb. 2008. https://doi.org/10.1016/j.cemconcomp.2007.05.013

H. Binici and O. Aksogan, “Sulfate resistance of plain and blended cement”, Cement and Concrete Composites, Vol. 28, no. 1, pp. 39-46, Jan. 2006. https://doi.org/10.1016/j.cemconcomp.2005.08.002

I.B. Messaoud, N. Hamdi and E. Srasra, “Physicochemical Characterization of Geopolymer Binders and Foams Made from Tunisian Clay”, Advances in Materials Science and Engineering, pp. 1-8, Feb. 2018. https://doi.org/10.1155/2018/9392743

Descargas

La descarga de datos todavía no está disponible.
Publicado
2021-02-08
Cómo citar
Álvarez Mantilla, H., Rios Reyes, C., & Castellanos Alarcón, O. M. (2021). Propiedades fisicomecánicas, desempeño y durabilidad de morteros geopoliméricos a base de puzolana natural tipo piedra pómez. INGE CUC, 17(1). https://doi.org/10.17981/ingecuc.17.1.2021.17
Sección
Artículos