Liquid Nitrogen as promotor of seeds germination and seedling growth in tropical legumes

Resumen

Introduction: The hard seed is the main cause of dormancy in most of the Leguminoseae species. Seed scarification methods, where physical damage is sought to break hard seed coat without diminishing quality, have been modified over time to make them more effective. The most commonly used seed scarification methods include heat, mechanical scarification, and freeze-thaw. Some methods for freeze-thaw scarification include ultra-low temperature immersion in liquid nitrogen (LN, -196 ° C).

Objective: Determine the effectiveness use of Liquid nitrogen (LN) as a scarification method to overcome dormancy in seeds of species of the Leguminoseae family.

Methodology: The physiological quality of all freshly harvested seeds was determined and scarified by direct immersion in LN for 30 minutes. Total germination was determined under laboratory conditions, as well as the time required for the seeds to reach 50% germination (T50) and the total number of seeds that remained hard at the end of the experiment. The percentage of emerged seedlings and their vegetative growth was evaluated for 21 days after sowing.

Results: The seeds of all species evaluated showed a high physiological quality at the time of harvest. Scarification with LN improved germination, emergence and vegetative growth in the species Desmodium scorpiorus, Teramnus labialis, Neonotonia wigthii and Phueraria phaseoloides.

Conclusions: Dormancy was effectively overcome in the seeds of the species D. scorpiorus, T. labialis, N. wigthii and P. phaseoloides. It was possible to increase the percentage and speed of germination and emergence, managing to obtain plants with greater vegetative growth during the first 21 days after sowing.

Palabras clave: Legumes, Seed dormancy, Germination, Liquid nitrogen

Referencias

E. Kimura y M. A. Islam, «Seed scarification methods and their use in forage legumes», Research Journal of Seed Science, vol. 5, n.o 2, pp. 38-50, feb. 2012, doi: 10.3923/rjss.2012.38.50.

N. Azani et al., «A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny – The Legume Phylogeny Working Group (LPWG)», taxon, vol. 66, n.o 1, Art. n.o 1, feb. 2017, doi: 10.12705/661.3.

A. Díaz, E. Castillo, P. C. Martín, y J. L. Hernández, «Pre-fattening of crossbred dairy bulls under grazing with glycine (Neonotonia wightii) and tropical grasses with rumen activator supplement», Cuban Journal of Agricultural Science, vol. 47, n.o 1, p. 4, 2013.

C. A. Mazorra-Calero et al., «Diagnóstico tecnológico y socioeconómico del establecimiento de Psidium guajava L. y Teramnus labialis en Ciego de Ávila, Cuba», Pastos y forrajes, vol. 39, n.o 4, pp. 259-264, 2016.

F. Llamas y C. Acedo, «Las leguminosas (Leguminosae o Fabaceae): una síntesis de las clasificaciones, taxonomía y filogenia de la familia a lo largo del tiempo», AmbioCiencias, vol. 14, pp. 5-18, 2016, doi: 10.18002/ambioc.v0i14.5542.

D. Fontes et al., «Selección de leguminosas herbáceas para el fomento de cobertura en plantaciones de naranja Valencia late», Pastos y Forrajes, vol. 32, n.o 1, pp. 1-11, 2008.

E. Can y N. Çelikta, «Breaking seed dormancy of some annual Medicago and Trifolium species by different treatments», Turkish J. of Field Crops, vol. 14, n.o 2, pp. 72-78, 2009.

C. Patanè y F. Gresta, «Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques», Journal of Arid Environments, vol. 67, n.o 1, pp. 165-173, oct. 2006, doi: 10.1016/j.jaridenv.2006.02.001.

B. M. Reed, «Plant cryopreservation: a continuing requirement for food and ecosystem security», In Vitro Cell.Dev.Biol.-Plant, vol. 53, n.o 4, pp. 285-288, ago. 2017, doi: 10.1007/s11627-017-9851-4.

H. W. Pritchard y J. Nadarajan, «Cryopreservation of orthodox (Desiccation Tolerant) seeds», en Plant Cryopreservation: A Practical Guide, B. M. Reed, Ed. New York, USA: Springer New York, 2008, pp. 485-501.

C. C. Baskin y J. M. Baskin, Seeds: ecology, biogeography, and evolution of dormancy and germination, 2. ed. Amsterdam: Elsevier/AP, 2014.

H. W. Pritchard, K. R. Manger, y F. G. Prendergast, «Changes in Trifolium arvense seed quality following alternating temperature treatment using Liquid nitrogen», Annals of Botany, vol. 62, n.o 1, pp. 1-11, jul. 1988, doi: 10.1093/oxfordjournals.aob.a087626.

L. W. Zeng, P. S. Cocks, S. G. Kailis, y J. Kuo, «The role of fractures and lipids in the seed coat in the loss of hardseededness of six Mediterranean legume species», J. Agric. Sci., vol. 143, n.o 1, pp. 43-55, feb. 2005, doi: 10.1017/S0021859605005034.

X. W. Hu, Y. R. Wang, Y. P. Wu, y C. C. Baskin, «Role of the lens in controlling water uptake in seeds of two Fabaceae ( Papilionoideae ) species treated with sulphuric acid and hot water», Seed Sci. Res., vol. 19, n.o 2, pp. 73-80, jun. 2009, doi: 10.1017/S0960258509301099.

N. M. Voronkova y A. B. Kholina, «Conservation of endemic species from the Russian far east using seed cryopreservation», Biology Bulletin, vol. 37, n.o 5, pp. 496-501, oct. 2010, doi: 10.1134/S1062359010050092.

García Reina Francisco, «Determination of the stability of the ethanol mixture with naphtha

through the measurement of his dielectric and refractometric properties», INGE CUC, Vol. 16, No. 2, Julio – Diciembre, 2020

M. Altare, S. Trione, J. C. Guevara, y M. Cony, «Stimulation and promotion of germination in Opuntia ficus-indica seeds», J. Prof. Assoc. Cactus Dev, vol. 8, p. 10, 2006.

M. A. Maldonado-Peralta et al., «Seed viability and vigour of two nanche species (Malpighia mexicana and Byrsonima crassifolia)», Seed Sci. Technol., vol. 44, n.o 1, pp. 168-176, abr. 2016, doi: 10.15258/sst.2016.44.1.03.

Y. Acosta et al., «Effects of Teramnus labialis (L.f.) Spreng seed cryopreservation on subsequent seed and seedling growth and biochemistry», Acta Physiol Plant, vol. 42, n.o 1, p. 7, ene. 2020, doi: 10.1007/s11738-020-3012-9.

Y. Acosta et al., «Seed cryostorage enhances subsequent plant productivity in the forraje species Teramnus labialis (L.f.) Spreng», CryoLetters, vol. 40, n.o 1, p. 8, 2019.

E. Enriquez-Peña, H. Suzán-Azpiri, y G. Malda-Barrera, «Viabilidad y germinación de semillas de Taxodium mucronatum (Ten.) en el estado de Querétaro, México.», Agrociencia, vol. 38, n.o 3, p. 8, 2004.

G. K. Jaganathan, K. J. Yule, y M. Biddick, «Determination of the water gap and the germination ecology of Adenanthera pavonina (Fabaceae, Mimosoideae); the adaptive role of physical dormancy in mimetic seeds», AoB PLANTS, vol. 10, n.o 5, sep. 2018, doi: 10.1093/aobpla/ply048.

M. T. Gonzalez-Arnao y F. Engelmann, Crioconservation de plantas en America Latina y el Caribe, 1ra ed. San José, Costa Rica: IICA, 2013.

S. N. Acharya, D. G. Stout, B. Brooke, y D. Thompson, «Cultivar and storage effects on germination and hard seed content of alfalfa», Can. J. Plant Sci., vol. 79, n.o 2, pp. 201-208, 1999, doi: 10.4141/P98-043.

H. W. M. Hilhorst, «Standardizing Seed Dormancy Research», en Seed Dormancy, vol. 773, A. R. Kermode, Ed. Totowa, NJ: Humana Press, 2011, pp. 43-52.

A. E. Ferreras, S. R. Zeballos, y G. Funes, «Inter- and intra-population variability in physical dormancy along a precipitation gradient», Acta Botanica Brasilica, vol. 31, n.o 1, pp. 141-146, mar. 2017, doi: 10.1590/0102-33062016abb0406.

Y. Acosta et al., «Dormancy breaking in Teramnus labialis (L.f.) Spreng seeds through liquid nitrogen exposure is based on the modification of the hilar region, cuticle, and macrosclereid», Acta Physiol Plant, vol. 42, n.o 9, p. 144, sep. 2020, doi: 10.1007/s11738-020-03134-9.

J. D. Bewley, K. J. Bradford, H. W. M. Hilhorst, y H. Nonogaki, «Synthesis of Storage Reserves», en Seeds, New York, NY: Springer New York, 2013, pp. 85-131.

F. Alane, R. Chabaca, L. Ouafi, M. Abdelguerfi laouar, y A. Abdelguerfi, «Break dormancy, germination capacity of medics after different techniques of scarification (Physical, Chemical and Mechanical)», African Journal of Agricultural Research, vol. 11, n.o 5, pp. 340-351, 2016, doi: 10.5897/AJAR2015.10303.

F. Pérez-García, «Effect of cryopreservation, gibberellic acid and mechanical scarification on the seed germination of eight endemic species from the Canary Islands», Seed Sci. Technol., vol. 36, n.o 1, pp. 237-242, abr. 2008, doi: 10.15258/sst.2008.36.1.29.

S. Jastrzębowski, J. Ukalska, W. Kantorowicz, M. Klisz, T. Wojda, y M. Sułkowska, «Effects of thermal-time artificial scarification on the germination dynamics of black locust (Robinia pseudoacacia L.) seeds», Eur J Forest Res, vol. 136, n.o 3, pp. 471-479, jun. 2017, doi: 10.1007/s10342-017-1046-3.

I. Martin y C. De la Cuadra, «Evaluation of different scarification methods to remove hardseededness in Trifolium subterraneum and Medicago polymorpha accessions of the Spanish base genebank», Seed Sci. Technol., vol. 32, n.o 3, pp. 671-681, oct. 2004, doi: 10.15258/sst.2004.32.3.03.

K. Endoh et al., «Cryopreservation of Fagus crenata seeds: estimation of optimum moisture content for maintenance of seed viability by Bayesian modeling», Can. J. For. Res., vol. 48, n.o 2, pp. 192-196, 2018, doi: 10.1139/cjfr-2017-0286.

S. Mira, A. Arnal, y F. Pérez-García, «Seed germination of Phillyrea angustifolia L., a species of difficult propagation», Forest Syst, vol. 26, n.o 1, p. e002, may 2017, doi: 10.5424/fs/2017261-10216.

M. Navarro, «Desempeño fisiológico de las semillas de árboles leguminosos de uso múltiple en el trópico», Pastos y Forrajes, vol. 26, n.o 2, pp. 97-114, 2003.

Y. Acosta et al., «Cryo-exposure of Neonotonia wightii Wigth and Am seeds enhances field performance of plants», Acta Physiol Plant, vol. 42, n.o 1, p. 13, ene. 2020, doi: 10.1007/s11738-019-3010-y.

M. Navarro, G. Febles, y V. Torres, «Utilization of the index of efficiency for estimating the influence of seed vigor on growth and seedling development», Cuban Journal of Agricultural Science, vol. 50, n.o 4, p. 14, 2016.

M. Santorum, L. H. P. Nóbrega, E. G. de Souza, D. D. Santos, W. Boller, y M. M. Mauli, «Comparison of tests for the analysis of vigor and viability in soybean seeds and their relationship to field emergence», Acta Sci. Agron., vol. 35, n.o 1, pp. 83-92, dic. 2013, doi: 10.4025/actasciagron.v35i1.14955.

F. Forcella, R. L. Benech Arnold, R. Sanchez, y C. M. Ghersa, «Modeling seedling emergence», Field Crops Research, vol. 67, n.o 2, pp. 123-139, jul. 2000, doi: 10.1016/S0378-4290(00)00088-5.

Descargas

La descarga de datos todavía no está disponible.
Publicado
2021-03-18
Cómo citar
Acosta Fernández, Y., Fontes Marrero, D., & Martínez Montero, M. (2021). Liquid Nitrogen as promotor of seeds germination and seedling growth in tropical legumes. INGE CUC, 17(2). https://doi.org/10.17981/ingecuc.17.2.2021.01