Sobretensiones por Ferroresonancia en un Sistema de Distribución Eléctrica Rural: Reporte de Caso y Simulación

  • Guillermo Fabián di Mauro Universidad Nacional de Mar del Plata. Argentina
  • Rubén Osvaldo Ferreyra Universidad Nacional de Mar del Plata. Argentina
  • Juan Antonio Suárez Universidad Nacional de Mar del Plata. Argentina
  • Alejandro Diego Jurado Universidad de Buenos Aires. Argentina.

Resumen

El objetivo del trabajo presentado fue el de analizar un caso de sobretensión en un sistema de distribución de energía eléctrica rural (13,2kV) perteneciente a una Cooperativa de Electricidad del sudeste de la Policía de Buenos Aires, Rep. Argentina. A partir de los parámetros que componen el circuito eléctrico se modeló la red dentro del entorno del programa computacional Electromagnetic Transients Program, con el fin de evaluar su comportamiento ante distintas maniobras de interrupción y estados de carga. El análisis de la simulación demostró que, en ciertas situaciones de operación y carga, se conjugaron las condiciones para la ocurrencia del fenómeno de ferrorresonancia, ocasionando la elevación de tensión de alimentación en transformadores monofásicos. Considerando los resultados del estudio, se brindaron pautas a tener en cuenta para la prevención y control del fenómeno.

Palabras clave: Sobretensiones, Ferroresonancia, Distribución eléctrica rural, Apertura de fusibles, ATPDraw, Circuitos no lineales

Referencias

[1] G. Buigues, I. Zamora, V. Valverde, A. J. Mazón, and J. I. S. Martín, “Ferroresonance in Three-Phase Power Distribution Transformers: Sources, Consequences and Prevention,” in 19th International Conference on Electricity Distribution, 2007, pp. 21–24.
[2] M. Roy and C. K. Roy, “A Study on Ferroresonance and Its Depedence on Instant of Switching Angle of the Source Voltage,” in International Conference on Power Systems ICPS´09, 2009, pp. 1–6. DOI:10.1109/icpws.2009.5442704
[3] K. Miličević, I. Rutnik, and I. Lukačević, “Impact of Initial Conditions and Voltage Source on the Initiation of Fundamental Frequency Ferroresonance,” in 12th WSEAS International Conference on SYSTEMS, 2008, pp. 22–24.
[4] J. B. Wareing and F. Perrot, “Ferroresonance overvoltages in distribution networks,” in IEEE Colloquium: Warning! Ferroresonance Can Damage Your Plant, 1997, pp. 1–5. DOI:10.1049/ic:19971178
[5] S. Santoso, R. C. Dugan, T. E. Grebe, and P. Nedwick., “Modeling Ferroresonance Phenomena in an Underground Distribution System,” in International Conference on Power Systems Transients IEEE IPST ´01, 2001, pp. 240–245.
[6] L. B. Crann and R. B. Flickinger, “Overvoltages on 14.4/24.9-Kv Rural Distribution Systems,” IEEE Trans. Power Appar. Syst., vol. 73, no. 3, pp. 1208–1212, 1954. DOI:10.1109/AIEEPAS.1954.4498949
[7] W. M. Edmunds and L. B. Crann, “Operating Experience With 14.4/24.9 Kv as a Rural Distribution Voltage,” III Trans. Am. Inst. Electr. Eng., vol. 75, no. 3, 1956. DOI:10.1109/AIEEPAS.1956.4499265
[8] R. Hopkinson, “Ferroresonance During Single-Phase Switching of 3-Phase Distribution Transformer Banks,” IEEE Trans. Power Appar. Syst., vol. 84, no. 4, pp. 289–293, 1965. DOI:10.1109/TPAS.1965.4766193
[9] P. Sakarung, T. Bunyagul, and S. Chatratana, “Investigation and Mitigation of Overvoltage Due to Ferroresonance in the Distribution Network,” J. Electr. Eng. Technol., vol. 2, no. 3, pp. 300–305, 2007. DOI:10.5370/JEET.2007.2.3.300
[10] P. Ferracci, La ferrorresonancia, Schneider Electric, 1997, pp. 12–20.
[11] L. A. Siegert, Alta Tensión y Sistemas de Transmisión, Caracas: Limusa, 1989.
[12] J. A. Corea-Araujo, F. Gonzalez-Molina, J. A. Martinez-Velasco, J. A. Barrado-Rodrigo, and L. Guasch-Pesquer, “An EMTP-Based Analysis of The Switching Shift Angle Effect During Energization/de-Energization in the Final Ferroresonance State,” in International Conference on Power System Transients (IPST), 2013.
[13] D. Jacobson, “Examples of ferroresonance in a high voltage power system,” IEEE Power Eng. Soc. Gen. Meet., vol. 2, pp. 1206–1212, 2003. DOI:10.1109/PES.2003.1270499
[14] V. Valverde, G. Buigues, A. J. Mazón, I. Zamora, and I. Albizu, “Ferroresonant Configurations in Power Systems,” in International Conference on Renewable Energies and Power Quality (ICREPQ’12), 2012.
[15] E. G. Vinson, A. Jurado, and N. Lemozy., “Ferroresonancia en Transformadores de Distribución. Influencia de sus Características, Secuencia de Maniobra y Carga Secundaria,” in VII Congreso Latinoamericano de Generación y Transporte de Energía Eléctrica, 2007, p. 7.
[16] G. Mokryani, M. R. Haghifam, H. Latafat, P. Aliparast, and A. Abdollahy, “Analysis of Ferroresonance in a 20 kV Distribution Network,” in 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), 2009, pp. 31–35. DOI:10.1109/peits.2009.5407008
[17] W. Chunbao, T. Lijun, and Q. Yinglin, “A study on factors influencing ferroresonance in distribution system,” in 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011, pp. 583–588. DOI:10.1109/drpt.2011.5993960
[18] J. Viqueira Landa, Redes eléctricas, 2nd ed. México: Representaciones y Servicios de Ingeniería, 1973.
[19] Study Committee 33, “Guidelines for Representation of Network Elements when Calculating Transients,” in International Conference on Large High Voltage Electric Systems, 1988.
[20] J. A. Martinez-Velasco, Power System Transients: Parameter Determination, 1st ed. Estados Unidos: CRC Press, 2009.
[21] S. P. Ang, “Ferroresonance Simulation Studies of Transmission Systems,” University of Manchester, 2010.
[22] Instituto Argentino de Certificación y Normalización, Norma IRAM 2250. Argentina, 2005.
[23] B. Mork, F. Gonzalez, D. Ishchenko, and D. L. Stuehm, “Hybrid Transformer Model for Transient Simulation—Part I: Development and Parameters,” in IEEE Trans. Power Deliv., vol. 22, no. 1, pp. 248–255, 2007. DOI:10.1109/TPWRD.2006.882999

[24] L. B. Viena, F. A. Moreira, N. R. Ferreira, and N. C. de Jesus, “A Comparative Analysis of Transformer Models Available in the ATP Program for the Simulation of Ferroresonance,” in International Conference on Power Systems Transients (IPST2011), 2011. DOI:10.1109/tdc-la.2010.5762966
[25] J. A. Martinez and B. A. Mork, “Transformer Modeling for Low- and Mid-Frequency Transients—A Review,” IEEE Trans. Power Deliv., vol. 20, no. 2, pp. 1625–1632, Apr. 2005. DOI:10.1109/TPWRD.2004.833884
[26] H. K. Høidalen, B. A. Mork, F. Gonzalez, D. Ishchenko, and N. Chiesa, “Implementation and verification of the Hybrid Transformer model in ATPDraw,” Electr. Power Syst. Res., vol. 79, no. 3, pp. 454–459, Mar. 2009. DOI:10.1016/j.epsr.2008.09.003
[27] L. M. Lobo, “Modelo de transformadores en saturación utilizando funciones de cálculo de parámetros en EMTP-RV,” Ing. Rev. Univ. Costa Rica, vol. 24, no. 2, pp. 105–116, 2014. DOI:10.15517/ring.v24i2.8251
[28] Ente Nacional Regulador de la Electricidad, Resolución ENRE 0444/2006. Argentina, 2006.
[29] R. A. Walling, “Ferroresonance in low-loss distribution transformers,” in 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), 2003, vol. 2, pp. 1220–1222.DOI:10.1109/PES.2003.1270502

Descargas

La descarga de datos todavía no está disponible.

Acerca de los Autores

Guillermo Fabián di Mauro, Universidad Nacional de Mar del Plata. Argentina

Ingeniero Electricista
Especialista en Seguridad Laboral

Rubén Osvaldo Ferreyra, Universidad Nacional de Mar del Plata. Argentina
Ingeniero Electricista
Juan Antonio Suárez, Universidad Nacional de Mar del Plata. Argentina

Ingeniero Electricista

Alejandro Diego Jurado, Universidad de Buenos Aires. Argentina.


Ingeniero Electricista

 Facultad de Ingeniería-UBA
Publicado
2015-01-05
Cómo citar
di Mauro, G., Ferreyra, R., Suárez, J., & Jurado, A. (2015). Sobretensiones por Ferroresonancia en un Sistema de Distribución Eléctrica Rural: Reporte de Caso y Simulación. INGE CUC, 11(1), 34-47. Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/378
Sección
ARTÍCULOS