Water requirements of new citrus orchards in “Jiguaní” Agricultural Enterprise




Palabras clave:

Orchards, Citrus, Water requirements, Evapotranspiration, Irrigation


Introduction: The planting of 1 200 ha of citrus fruits is planned in the “Jiguaní” Agricultural Enterprise and, for the design and subsequent management of the irrigation systems, it is essential to previously establish the water needs of the crop.

Objective: Calculate the water needs of citrus orchards using the procedures outlined by FAO-56, applying the most recent update of the Allen and Pereira (A&P) approach.

Method: To calculate the water needs of the crop, the ETo × Kc approach established by FAO-56 was followed. Within this, the ETo values were calculated using the Hargreaves-Samani equation and those of Kc, from the update of the A&P approach.

Results: Water needs vary between 1.0 and 1.9 mm d-1 for young orchards, from 1.7 to 3.5 mm d-1 for high-density adult plantations and low trees, and from 2.2 to 4.3 mm d-1 for tall trees.

Conclusions: The pertinence of the A&P approach to estimate the Kcb and Kc coefficients to determine the water consumption of orchards benefited with localized and high-frequency irrigation techniques was corroborated.


Los datos de descargas todavía no están disponibles.


[1] Empresa Nacional de Proyectos Agropecuarios, “Programa de Desarrollo de Cítricos. Estudio de Factibilidad Técnico-Económica,” ENPA, La Habana, 2018.
[2] O. Brown Manrique, N. Méndez Jurjo, and F. García Reina, “Design of a windmill for the water pumping in a sprinkle irrigation system,” INGE CUC, vol. 17, no. 2, 2021, doi: http://doi.org/10.17981/ ingecuc.17.2.2021.16.
[3] W. Mahohoma, “Measurement and modelling of water use of citrus orchards,” PhD. Thesis in Agronomy, University of Pretoria, South Africa, 2016. [Online]. Available: https://repository. up.ac.za
[4] R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Roma: FAO, 2006. [Online]. Available: http://www.fao.org/3/x0490s/ x0490s00.htm
[5] R. G. Allen and L. S. Pereira, “Estimating crop coefficients from fraction of ground cover and height,” Irrig. Sci., vol. 28, no. 1, pp. 17–34, 2009, doi: 10.1007/s00271-009-0182-z.
[6] N. J. Taylor et al., “Modelling water use of subtropical fruit crops: The challenges,” in Acta Horticulturae, 2017, no. 1160, pp. 277–284. doi: 10.17660/ActaHortic.2017.1160.40.
[7] L. S. Pereira, P. Paredes, F. Melton, L. Johnson, M. Mota, and T. Wang, “Prediction of crop coefficients from fraction of ground cover and height: Practical application to vegetable, field and fruit crops with focus on parameterization,” Agric. Water Manag., vol. 252, p. 106663, 2021, doi: 10.1016/j.agwat. 2020.106663.
[8] G. Rallo et al., “Updated single and dual crop coefficients for tree and vine fruit crops,” Agric. Water Manag., vol. 250, p. 106645, 2021, doi: 10.1016/j.agwat.2020.106645.
[9] J. M. Pérez, A. Hernández, D. Bosch, R. I. Marsán, O. Muníz, and E. Fuentes, “Mapa de suelos de la República de Cuba,” Instituto de Suelos, La Habana, 2012.
[10] M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel, “World Map of the Köppen-Geiger climate classification updated,” Meteorol. Z., vol. 15, no. 3, pp. 259–263, 2006, doi: 10.1127/0941-2948/ 2006/0130.
[11] R. Vázquez, A. Fernández, O. Solano, B. Lapinel, and F. Rodríguez, “Mapa de Aridez de Cuba,” Zonas Áridas, vol. 11, no. 1, pp. 101–109, 2007, doi: 10.21704/za.v11i1.207.
[12] M. E. Jensen and R. G. Allen, Evaporation, evapotranspiration, and irrigation water requirements, Second Edition. Reston, Virginia: American Society of Civil Engineers, 2016. [Online]. Available: http://www.asce.org /bookstore.
[13] P. Paredes, L. S. Pereira, J. Almorox, and H. Darouich, “Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargreaves-Samani equation using local climatic variables,” Agric. Water Manag., vol. 240, p. 106210, 2020, doi: 10.1016/j.agwat.2020.106210.
[14] Addinsoft, XLSTAT Statistical and Data Analysis Solution. New York, USA, 2021. [Online]. Available: https://www.xlstat.com
[15] D. R. Helsel, R. M. Hirsch, K. R. Ryberg, S. A. Archfield, and E. J. Gilroy, Statistical methods in water resources: U.S. Geological Survey Techniques and Methods, book 4, chapter A3. Reston, Virginia: U.S. Geological Survey, 2020. [Online]. Available: https://doi.org/10.3133/tm4a3
[16] G. Vadde, R. Shreedhar, and C. Hiremath, “Cropwater requirement for different hydrological scenarios using CROPWAT,” -Manag. J. Civ. Eng., vol. 7, p. 27, 2017, doi: 10.26634/jce.7.4.13800.
[17] M. Gabr, “Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt,” Model. Earth Syst. Environ., 2021, doi: 10.1007/s40808-021-01268-4.
[18] C. Bonet, I. Acea, O. Brown, M. Hernández, and C. Duarte, “Coeficientes de cultivo para la programación del riego de la piña,” presented at the Memorias del III Simposio Internacional de Fruticultura Tropical y Subtropical: FRUTICULTURA 2010, La Habana, 2010.
[19] Y. Chaterlán, G. Hernández, P. Paredes, R. Martínez, T. López, and L. S. Pereira, “Estimación de los coeficientes de cultivo de la papaya para mejorar la programación del riego en el sur de La Habana,” Rev. Cienc. Téc. Agropecu., vol. 21, no. 1, pp. 37–42, 2012.
[20] Y. Sosa-Sánchez, C. E. Duarte-Díaz, E. Cisneros-Zayas, A. Puente-Sánchez, L. González-Risco, and M. Breffe-Navarro, “Ajuste de los requerimientos hídricos del pomelo (citrus paradisi macf.), en Jagüey Grande, Matanzas, Cuba,” Rev. Ing. Agríc., vol. 11, no. 3, pp. 9–15, 2021, [Online]. Available: https://revistas.unah.edu.cu/index.php/IAgric/ article/view/1394/2642
[21] K. T. Morgan, T. A. Obreza, J. M. S. Scholberg, L. R. Parsons, and T. A. Wheaton, “Citrus Water Uptake Dynamics on a Sandy Florida Entisol,” Soil Sci. Soc. Am. J., vol. 70, no. 1, pp. 90–97, 2006, doi: 10.2136/sssaj2005.0016.
[22] X. Jia, A. Swancar, J. M. Jacobs, M. D. Dukes, and K. Morgan, “Comparison of Evapotranspiration Rates for Flatwoods and Ridge Citrus,” Trans. ASABE, vol. 50, no. 1, pp. 83–94, 2007, doi: 10.13031/2013.22414.
[23] J. Keller and R. D. Bliesner, Sprinkle and trickle irrigation. New York, USA: Springer Science and Business Media, 1990.



Cómo citar

Fernández Hung, K., Vargas Rodríguez, P., Cueto Rodríguez, J. R., & Brown Manrique, O. N. (2022). Water requirements of new citrus orchards in “Jiguaní” Agricultural Enterprise. INGE CUC, 18(1). https://doi.org/10.17981/ingecuc.18.1.2022.08




Artículos más leídos del mismo autor/a