Modelo de machine learning para la clasificación de municipios por cultivos ilícitos en Colombia de 2010 a 2020
##plugins.themes.bootstrap3.article.main##
Resumen
Introducción— La Oficina de las Naciones Unidas contra la Droga y el Delito (UNODC) clasifica a Colombia como uno de los países donde el narcotráfico y el delito ponen en riesgo la seguridad, la paz y las oportunidades de desarrollo de los ciudadanos.
Objetivo— Este artículo presenta la aplicación del algoritmo de clasificación no supervisado K-means para categorizar los municipios que tienen presencia de cultivos de coca en Colombia. Metodología: Se hizo uso de la metodología CRISP-DM, propia de la minería de datos, y para la correlación de variables se utilizó el algoritmo PCA (Análisis de Componentes Principales).
Resultados— Se utilizaron múltiples fuentes de información como: el número de hectáreas de coca por municipio, incautaciones, laboratorios destruidos, erradicación manual y fumigación, monitoreadas por la institucionalidad nacional, con el fin de realizar cruces con variables socioeconómicas y de desempeño de los municipios que tienen cultivos de coca en el periodo de 2010 a 2020. Partiendo de la clasificación, se analizaron los escenarios de cada categoría para hallar escenarios que permitan dilucidar las dinámicas de los territorios que sufren este flagelo.
Conclusiones— Se encontró que el comportamiento de los municipios productores de coca responde principalmente a 4 grupos. También se encuentra que el municipio de Tumaco en Nariño no encaja en ninguna categoría ya que excede la producción respecto a los demás municipios.
Descargas
##plugins.themes.bootstrap3.article.details##

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los artículos publicados son de exclusiva responsabilidad de sus autores y no reflejan necesariamente las opiniones del comité editorial.
La Revista INGE CUC respeta los derechos morales de sus autores, los cuales ceden al comité editorial los derechos patrimoniales del material publicado. A su vez, los autores informan que el presente trabajo es inédito y no ha sido publicado anteriormente.
Todos los artículos están bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.