Valor en Riesgo y simulación: una revisión sistemática
DOI:
https://doi.org/10.17981/econcuc.43.1.2022.Econ.3Palabras clave:
Riesgo; valor en riesgo; VaR; bibliometría; mapeo científico.Resumen
El valor en riesgo es la medida de mercado utilizada por las instituciones financieras y adoptada por el Comité de Basilea para calcular y gestionar el riesgo, lo que la convierte en una medida necesaria para el sector financiero. En este artículo se realiza un estudio bibliométrico del Valor en Riesgo (VaR) y su cálculo mediante procesos de simulación. Para ello se revisan las investigaciones publicadas en los últimos 20 años en las bases de datos Scopus y Web of Science, recopilando los documentos más relevantes para su análisis. Posteriormente se presenta la justificación del tema y se elabora la red social utilizando la analogía del árbol, en la que cada uno de los documentos más importantes se clasifican como raíz, tronco u hoja. Finalmente, se identifican las perspectivas de investigación del tema mediante un análisis de co-citaciones. Se concluye que las mujeres tienen un alto grado de participación en cargos gerenciales, sin embargo, se nota una diferencia significativa de 3.492.556 pesos en los salarios de los dos sexos, donde los hombres son quienes obtiene mayores ingresos.
Descargas
Citas
Asimit V, Peng L, Wang R y Yu A (2019). An efficient approach to quantile capital allocation and sensitivity analysis. Mathematical Finance. doi: 10.1111/mafi.12211
Aria, M. y Cuccurullo, C. (2017) Bibliometrix: una herramienta R para el análisis exhaustivo de la cartografía científica. Journal of Informetrics, 11 (4), pp 959-975, Elsevier. Tomado de: https://cran.r-project.org/web/packages/bibliometrix/vignettes/bibliometrix-vignette.html
Anderso F, Mausser H, Rosen D, Uryasev S. (2.001). Credit risk optimization with Conditional Value-at-Risk criterion. Math. Program.Ser. pp: 273–291. doi: 10.1007/s101070000201
Andriosopoulos K y Nomikos N (2015). Risk management in the energy markets and Value-at-Risk modelling: a hybrid approach. The European Journal of Finance, 21, pp 548-574. doi: 10.1080/1351847X.2013.862173
Artzner P, Delbaen F, Eber J, Heath D. (1.999). Coherent Measures Of Risk. Mathematical Finance, Vol. 9, No. 3, pp 203–228, doi: 10.1111/1467-9965.00068
Babazadeh H y Esfahanipour A. (2019). A novel multi period mean-VaR portfolio optimization model considering practical constraints and transaction cost, Journal of Computational and Applied Mathematics 361 pp. 313–342. https://doi.org/10.1016/j.cam.2018.10.039.
Bastian M, Heymann S, (Gephi 2009): An Open Source Software for Exploring and Manipulating Networks. Proceedings of the Third International ICWSM Conference (2009).
Bollerslev T (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics 31 pp 307-327. doi: 10.1016/0304
Broadie M, Du Y y Moallemi C. (2011) Efficient Risk Estimation via Nested Sequential Simulation. Management Science 57 pp 1172-1194. http://dx.doi.org/10.1287/mnsc.1110.1330
Buitrago, S., Duque, P., & Robledo, S. (2020). Branding Corporativo: una revisión bibliográfica. ECONÓMICAS CUC, 41(1). https://doi.org/10.17981/econcuc.41.1.2020.Org.1
Chen Q, Gerlach R y Lu Z (2012). Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution. Computational Statistics an Data Analysis. No 56. Pp 3498-3516. doi 10.1016/j.csda.2010.06.018
Colletaz G, Hurlin C y Pérignon C (2013). The Risk Map: A new tool for validating risk models. Journal of Banking & Finance 37, pp 3843-3854. http://dx.doi.org/10.1016/j.jbankfin.2013.06.006
Dahlgreen R, Ching C yLawarree J. (2003). Risk Assessment in Energy Trading. IEEE Transactions on Power Systems, Vol. 18, No2, pp 503- 511. doi: 10.1109/TPWRS.2003.810685
Du Z, Escanciano J. (2017). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science. 63(4); 940-958. https://doi.org/10.1287/mnsc.2015.2342.
Duffie D y Pan J. (1.997). An Overview of Value at Risk. The Journal Of Derivatives, pp 7-49, doi: 10.3905/JOD.1997.407971
Duque, P. & Cervantes-Cervantes, L.-S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 451–464. https://doi.org/10.18046/j.estger.2019.153.3389
Duque, P., & Duque, J. (2020). Marketing digital y comercio electrónico: un análisis bibliométrico. In M. I. Redondo Ramírez, A. M. Barrera Rodríguez, & C. C. Duque
Gómez (Eds.), Nuevos modelos de negocio (pp. 74–96). Centro de Investigaciones Facultad de Ciencias Económicas, Administrativas y Contables. http://hdl.handle.net/10901/18463
Engle R (1.982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, Vol. 50, No. 4, pp. 987-1007. doi: 10.2307/1912773
Engle R, Manganelli S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics. article: http://dx.doi.org/10.1198/073500104000000370
Escanciano J y Pei P (2012). Pitfalls in backtesting Historical Simulation VaR models
Journal of Banking & Finance, pp 2233–2244. http://dx.doi.org/10.1016/j.jbankfin.2012.04.004
Gaglianone W, Renato L, Linton O y Smith D (2011) Evaluating Value-at-Risk Models via Quantile Regression. Journal of Business & Economic Statistics, pp 150-160.doi: 10.1198/ jbes.2010.07318
Gaio L, Pimenta T, Guasti F, Passos I, Oliveira N, (2018). Value-at-risk performance in emerging and developed countries, International Journal of Managerial Finance, https://doi.org/10.1108/IJMF-10-2017-0244
Glasserman P, Heilderberg P y Shahabuddin P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, Vol. 12, No. 3, pp 239–269. doi: 10.1111/1467-9965.00141
Glasserman P y Li J. (2005). Importance Sampling for Portfolio Credit Risk. Management Science.Vol. 51, No. 11, pp. 1643–1656. doi: 10.1287/mnsc.1050.0415.
Gephi.org (2017). Gephi, recuperado de: https://gephi.org/
Gençay R, Selçuk F y Ulugülyagci A. (2003). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance. Mathematics and Economics 33 pp 337–356, doi 10.1016/J.INSMATHECO.2003.07.004
Gencay R, Selcuk F (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets, International Journal of Forecasting pp. 287 – 303. doi:10.1016/j.ijforecast.2004.09.005.
Glosten L, Jagannathan R y Runkle D. (1.993). On the Relation between the Expected Value and the Volatility of the Nominal Excess. The Journal of Finance, Vol. 48, No. 5 pp. 1779-1801, doi 10.2307/2329067
Gordy M y Juneja S. (2010). Nested Simulation in Portfolio Risk Measurement. Management Science. Institute for Operations Research and the Management Sciences, pp 1833-1848. doi:10.1287/mnsc.1100.1213
Hong L (2009). Estimating Quantile Sensitivities. Operations Research 57 pp 118-130. http://dx.doi.org/10.1287/ opre.1080.0531
Huanga D, Zhub S , Fabozzi F y, FukushimaM (2008). Portfolio selection with uncertain exit time: A robust CVaR approach. Journal of Economic Dynamics & Control 32 pp. 594–623. doi 10.1016/j.jedc.2007.03.003
Jabr R.(2005). Robust Self-Scheduling Under Price Uncertainty Using Conditional Value-at-Risk. IEEE Transactions on Power Systems, Vol. 20, NO. 4. pp 1852-1858. doi: 10.1109/TPWRS.2005.85695
Kennedy J y Elberhart R. (1995). Particle Swarm Optimization. Purdue School of Engineering and Technology. doi: 10.1109/ICNN.1995.488968
Kupiec P (1995). Techniques for Verifying the Accuracy of Risk Measurement Models The Journal of Derivatives. Pp73-84. doi: 10.3905/JOD.1995.407942
Kuester K, Mittnik S y Paoella M (2005). Value-at-Risk Prediction: A Comparison of Alternative Strategies. Journal of Financial Econometrics, 2006, Vol. 4, No. 1, 53–89. doi: 10.1093/jjfinec/nbj002
Liu B y Liu Y. (2002). Expected Value of Fuzzy Variable and Fuzzy Expected Value Models. IEEE Transactions on Fuzzy Systems, VOL. 10, NO. 4. Pp 445- 450. doi: 10.1109/TFUZZ.2002.800692
Lwin K, Qu R, MacCarthy B (2017), Mean-VaR Portfolio Optimization: A Nonparametric Approach, European Journal of Operational Research. doi: 10.1016/j.ejor.2017.01.0053.
Markowitz H (1.952). Portfolio Selection, The Journal Of Finance. (V7. No 1 pp 77 – 91). https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
Marimoutou V, Raggad B y Trabelsi A. (2009). Extreme Value Theory and Value at Risk: Application to oil market. Energy Economics, pp 519–530. doi: 10.1016/j.eneco.2009.02.005
McNeil A. y Frey R. (2.000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance 7, pp 271–300. doi: 10.1016/S0927
Moazeni S, Coleman T, y Li Y (2013). Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy. Springer Science Business Media New York. doi: 10.1007/s10479-013-1391-7
Muller F, Brutti M (2017). Numerical comparison of multivariate models to forecasting risk measures. Risk Manag. doi: 10.1057/s41283-017-0026-8
Nelson B. (1.991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, Vol. 59, No. 2 , pp. 347-370. 10.2307/2938260. doi: 10.2307/2938260
Novales A y Garcia L (2018): Backtesting extreme value theory models of expected shortfall. Quantitative Finance. doi: 10.1080/14697688.2018.1535182
Paolella M. (2017). The Univariate Collapsing Method for Portfolio Optimization. Econometrics 2017. doi: 10.3390/econometrics5020018
Perignon C, Smith D. (2010). The level and quality of Value-at-Risk disclosure by commercial Banks. Journal of Banking & Finance 34 pp 362–377. doi: 10.1016/J.JBANKFIN.2009.08.009
Ping C, Vijverberg W Y Taspinar S (2015). Linking Tukey’s Legacy to Financial Risk Measurement. Computational Statistics and Data Analysis (2015), http://dx.doi.org/10.1016/j.csda.2015.08.018
Pritsker M (2006). The hidden dangers of historical simulation. Journal of Banking & Finance. Pp561-582. doi:10.1016/j.jbankfin.2005.04.013
R Core Team (2020). R: A language and environment for statistical. computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.
Robledo, S., Osorio, G., & Lopez, C. (2014). Centro de Investigación de la Universidad Distrital Francisco José de Caldas. Revista vínculos, 11(2), 6–16. https://doi.org/10.14483/2322939X.9664
Rockafellar R, 2000, J Risk, V2, P21. doi: 10.21314/JOR.2000.038
Scheller F y Auer B (2018): How does the choice of Value-at-Risk estimator influence asset allocation decisions? Quantitative Finance. doi: 10.1080/14697688.2018.1459806
Vijverberg, C.-P.C. y Vijverberg, W.P.M (2015). Linking Tukey’s Legacy to Financial Risk Measurement. Computational Statistics and Data Analysis (2015), http://dx.doi.org/10.1016/j.csda.2015.08.018
Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge University Press. https://books.google.com/books/about/Social_Network_Analysis.html?hl=&id=CAm2DpIqRUIC
Wang B, Wang S, Watadata J. (2011). Fuzzy-Portfolio-Selection Models With Value-at-Risk. IEEE Transactions on Fuzzy Systems, vol. 19, No. 4, pp 758-769. doi: 10.1109/TFUZZ.2011.2144599
Yao H, Li Z, Lai Y (2013). Mean–CVaR portfolio selection: A nonparametric estimation framework. Computers & Operations Research. pp1014-1022. doi: 10.1016/J.COR.2012.11.007
Wang C, Chen Q y Gerlach R (2018): Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution. Quantitative Finance. doi: 10.1080/14697688.2018.1540880
Xu L. (2014). Model-free inference for tail risk measures. Econometric Theory, 2014, pp 1-32. doi:10.1017/S0266466614000802
Yao H, Li Z y Lai Y (2.013). Mean–CVaR portfolio selection: A nonparametric estimation framework. Computers & Operations Research 40, pp 1014-1022
http://dx.doi.org/10.1016/j.cor.2012.11.007
Zaichao Du, Escanciano J. (2016). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science 63(4):940-958. https://doi.org/10.1287/mnsc.2015.2342
Zhang L, Luo M, Boncella R.(2017). Product information diffusion in a social. Electronic Commerce Research (2018). doi: 10.1007/s10660-018-9316-9
Zhang Q, Wang X (2009). Hedge Contract Characterization and Risk-Constrained Electricity Procurement. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 3. Pp 1547-1548. doi: 10.1109/TPWRS.2009.2021233
Ziggel D, Berens T, Weib G, Wied D. (2014). A new set of improved Value-at-Risk back tests. Journal of Banking & Finance 48 pp 29–41. doi:10.1016/J.JBANKFIN.2014.07.005
Zuluaga, M., Robledo, S., Osorio Zuluaga, G. A., Yathe, L., Gonzalez, D., & Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 14(25), 121. https://doi.org/10.22490/24629448.1735

Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 ECONÓMICAS CUC

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)