Sobre las características de las Redes Definidas por Software para la provisión de calidad del servicio en redes de datos

Resumen

Introducción: Las redes tradicionales implementan en su gran mayoría dispositivos donde el control es distribuido y mezclado con el plano de datos, aspecto que no permite una evolución rápida hacia un proceso que contribuya a mejorar el transporte de los servicios. Por el contrario, las Redes Definidas por Software son un conjunto de servicios de transporte que optimizan la utilización de los recursos al poseer una estructura de red centralizada. Objetivo: Determinar los aspectos que hacen que las redes definidas por software puedan ofrecer características de calidad de servicio en redes de datos. Metodología: Este estudio se realiza mediante simulación, sobre una misma red base y bajo las mismas condiciones de trabajo, llevando a cabo medidas del tiempo de respuesta del envío de paquetes y gestión del ancho de banda transportado. El estudio también incluye una prueba mediante la transmisión de contenido multimedia a través de una arquitectura de red definiendo prioridades a los enlaces. Resultados: Los resultados muestran la forma en que las Redes Definidas por Software logran una mejor gestión del envío de datos a través de la red base. Del mismo modo, los resultados previos fueron respaldados con los obtenidos en la prueba de calidad de servicio para un flujo multimedia. Conclusiones: Las redes definidas por software debido a su control centralizado habilitan el encaminamiento y provisión de calidad del servicio en redes de datos basadas en dispositivos de capa-2.
Palabras clave: Redes Definidas por Software, SDN, Floodlight, Mininet, Packet Tracer, Calidad de servicio, Ancho de banda, Encolamiento, Tasa de transmisión, tiempo de respuesta

Referencias

N. Feamster, J. Rexford and E. Zegura, "The Road to SDN: An Intellectual History of Programmable Networks." ACM Sigcomm Computer Communication, vol. 44, no. 2, pp. 87–98. 2014. http://doi.org/10.1145/2602204.2602219

A. Basit, S. Qaisar, S. H. Rasool, and M. Ali, “SDN Orchestration for Next Generation Inter-Networking: A Multipath Forwarding Approach,” IEEE Access, vol. 5, pp. 13077–13089, 2017. http://doi.org/10.1109/ACCESS.2017.2683943

H . Kim and N. Feamster, “Improving network management with software defined networking,” IEEE Commun.Mag., vol. 51, no. 2, pp. 114–119, 2013. http://doi.org/10.1109/MCOM.2013.6461195

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, p. 69, 2008. http://doi.org/10.1145/1355734.1355746

F. Laassiri, M. Moughit and N. Idboufker, “Evaluation of the QoS parameters in different SDN architecture using Omnet 4.6++,” 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 2017, pp. 690-695. http://doi.org/10.1109/STA.2017.8314976

M. A. Barry, J. K. Tamgno, C. Lishou and M. B. Cissé, “QoS impact on multimedia traffic load (IPTV, RoIP, VoIP) in best effort mode,” 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon-si Gangwon-do, Korea (South), 2018, pp. 694-700. http://doi.org/10.23919/ICACT.2018.8323886

M. Haiyan, Y. Jinyao, P. Georgopoulos and B. Plattner, “Towards SDN based queuing delay estimation,” in China Communications, vol. 13, no. 3, pp. 27-36, March 2016. http://doi.org/10.1109/CC.2016.7445500

X. Li, J. Yan, and H. Ren, “Software defined traffic engineering for improving Quality of Service,” China Commun., vol. 14, no. 10, pp. 12–25, Oct. 2017. http://doi.org/10.1109/CC.2017.8107629

B. Awerbuch, S. Kutten and D. Peleg, “On buffer-economical store-and-forward deadlock prevention,” IEEE INFCOM ‘91. The conference on Computer Communications. Tenth Annual Joint Comference of the IEEE Computer and Communications Societies Proceedings, Bal Harbour, FL, USA, 1991, pp. 410-414 vol. 1. http://doi.org/10.1109/INFCOM.1991.14753

I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions,” IEEE Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018. http://doi.org/10.1109/COMST.2018.2815638

Y. Yan and H. Wang, “Open vSwitch Vxlan performance acceleration in cloud computing data center,” 2016 5th International Conference on Computer Science and Network Technology (ICCSNT), Changchun, 2016, pp. 567-571. http://doi.org/10.1109/ICCSNT.2016.8070222

Y. Yan and H. Wang, “Open vSwitch Vxlan performance acceleration in cloud computing data center,” 2016 5th International Conference on Computer Science and Network Technology (ICCSNT), Changchun, 2016, pp. 567-571. http://doi.org/10.1109/ICCSNT.2016.8070222

M. Vijayalakshmi, P. Desai and M. M. Raikar, “Packet Tracer Simulation Tool as Pedagogy to Enhance Learning of Computer Network Concepts,” 2016 IEEE 4th International Conference on MOOCs, Innovation and Technology in Education (MITE), Madurai, 2016, pp. 71-76. http://doi.org/10.1109/MITE.2016.024

M. J. Mišić and S. R. Gajin, “Simulation of Software Defined Networks in Mininet environment,” 2014 22nd Telecommunications Forum Telfor (TELFOR), Belgrade, 2014, pp. 1055-1058. http://doi.org/10.1109/TELFOR.2014.7034588

Acerca de los Autores

Jonier Hernando Porras Duque, Universidad Distrital Francisco José de Caldas. Bogotá (Colombia)
Jonier Hernando Porras Duque is an Electronic Engineer from Universidad Distrital Francisco José de Caldas, Bogotá, Colombia. Currently, he is pursuing a Master’s Degree in Electronic with an emphasis in communication at the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) research center in Puebla, México. Since 2016, he is a member of the Electromagnetic Radiation and Optical Communications Research Group research group (GRECO) of the Universidad Distrital Francisco José de Caldas. His research interests are focused on the area of information and communication technology. https://orcid.org/0000-0002-5106-3517
Daniel Orlando Ducuara Beltrán, Universidad Distrital Francisco José de Caldas. Bogotá (Colombia)
Daniel Orlando Ducuara Beltrán is an Electronic Engineer from Universidad Distrital Francisco José de Caldas, Bogotá, Colombia. Since 2016, he has been member of the Electromagnetic Radiation and Optical Communications Research Group (GRECO) at Universidad Distrital Francisco Jose de Caldas. He is pursuing a Master’s degree program (Diplôme d’Ingénieur) at IMT Atlantique, France. His research interest is focused on information and communication technology. https://orcid.org/0000-0001-8764-181X
Gustavo Adolfo Puerto Leguizamón, Universidad Distrital Francisco José de Caldas. Bogotá (Colombia)
Gustavo Adolfo Puerto Leguizamón, received his BSc. in Telecommunications Engineering in 2002. He joined the Institute of Telecommunications and Multimedia Applications at the Universitat Politècnica de València in Spain where he undertook Advanced Research Studies in 2005 and a PhD. in 2008. As a postdoctoral researcher, he was co-leader of work package, which dealt with a new generation of physical technologies for optical networks under the framework of the European funded project ALPHA (Architectures for Flexible Photonics Home and Access Networks). Since 2012 he has worked as an Associate Professor at the Universidad Distrital Francisco José de Caldas in Bogotá where he is a member of the Electromagnetic Radiation and Optical Communications Research Group research group (GRECO). He has published more than 50 papers in journals and international conferences, and he is a reviewer for the IEEE Journal on Lightwave Technologies and IEEE Photonic Technology Letters. His research interests include networking, optical networking, and radio over fiber systems. https://orcid.org/0000-0002-6420-9693
Fig. 4. Network test for QoS. (Porras, Ducuara and Puerto, 2018)
Publicado
2018-12-17
Cómo citar
Porras Duque, J., Ducuara Beltrán, D., & Puerto Leguizamón, G. (2018). Sobre las características de las Redes Definidas por Software para la provisión de calidad del servicio en redes de datos. INGE CUC, 14(2), 106-115. https://doi.org/10.17981/ingecuc.14.2.2018.10