Modelo de inteligencia artificial y aprendizaje automático para la predicción espacial y temporal de eventos de sequía en el departamento del Magdalena, Colombia.
##plugins.themes.bootstrap3.article.main##
Resumen
Introducción— La sequía es uno de los fenómenos hidrometeorológicos más críticos por sus impactos en la sociedad. A pesar de que Colombia es un país tropical, existen zonas del territorio que presentan periodos de sequía, lo que ocasiona importantes perjuicios económicos.
Objetivo— Debido a los recientes avances en cuanto a las resoluciones espaciales y temporales de la teledetección, y a las técnicas de inteligencia artificial, es posible desarrollar modelos de aprendizaje automático apoyados en información histórica.
Metodología— En este estudio se construyó un modelo clasificador de Bosque Aleatorio (RF) y Árbol de Decisión en Bolsa (DTC) para realizar la predicción espacial y temporal de sequía en el departamento del Magdalena utilizando las siguientes características: Índice de Vegetación de Diferencia Normalizada (NDVI), temperatura de la superficie terrestre (LST), precipitación, Índice de Agua de Diferencia Normalizada (NDWI), Índice de Sequía Multibanda Normalizada (NMDI), evapotranspiración (ET), humedad superficial del suelo (SSM), humedad subsuperficial del suelo (SUSM), Índice ENSO Multivariado (MEI), Índice de Oscilación del Sur (SOI) e Índice del Niño Oceánico (ONI).
Resultados— Para el etiquetado, que permite entrenar y evaluar el modelo, se utilizó el Índice de Precipitación Estandarizado (SPI) para identificar los eventos de sequía.
Conclusiones— La implementación del modelo desarrollado puede permitir a las entidades gubernamentales tomar acciones para mitigar los impactos generados por sequías recurrentes en sus territorios.
Descargas
##plugins.themes.bootstrap3.article.details##

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los artículos publicados son de exclusiva responsabilidad de sus autores y no reflejan necesariamente las opiniones del comité editorial.
La Revista INGE CUC respeta los derechos morales de sus autores, los cuales ceden al comité editorial los derechos patrimoniales del material publicado. A su vez, los autores informan que el presente trabajo es inédito y no ha sido publicado anteriormente.
Todos los artículos están bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.
http://orcid.org/0000-0002-2648-2197
