Does caffeine matter for arousal? Affective and autonomic responses induced by caffeine in coffee intake: evidence from a double-blind tasting task

Abstract

Coffee is consumed worldwide, but there are different types of espresso blends, each with its unique concentration of caffeine, which can have different effects on the human being. The aim of this study was to understand the effect of the impact of caffeine on the autonomic nervous system, evaluating the physiological changes and subjective responses due to different levels of caffeine intake. A double-blind tasting task consisting of one within-subject factor design (caffeine level: high / double caffeine mixture (blend A) vs single-charge caffeine mixture (blend B) vs low-caffeine mixture (blend c) allowed us to assess participants’ autonomic responses using Heart Rate Variability (HRV) and Pupillary Reactivity (PR). Arousal was also assessed through the Self-Assessment Manikin (SAM). Results revealed statistically significant differences in HRV and PR between coffee blends, showing the blend A,a more pronounced autonomic response that blend C. However, no significant differences were found in arousal level among coffee blends. These results are similar to previous research that pointed out to a discordance between subjective and objective measures when caffeine is consumed.

Keywords: affective valence, caffeine, autonomic response, pupil response, heart rate

References

AcqKnowledge. (version 4.1). Simulate and manipulate data captured with a number of systems and transducers. [Data Software]. Santa Barbara: Biopac Systems, Inc. Available:

https://www.biopac.com/

Adan, A.; Prat, G.; Fabbri, M. & Sànchez-Turet, M. (2008). Early effects of caffeinated and decaffeinated coffee on subjective state and gender differences. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(7), 1698 –1703.

https://doi.org/10.1016/j.pnpbp.2008.07.005

Ahmadi, P.; Mokhtari, P.; Kazem, M. & Mousavi; V. (2012). The Effect of Caffeine Consumption on Arousal, Activation, and Dart-Throwing Performance in Different Times of Day. Annals of Biological Research, 3(1), 249–258.

https://doi.org/10.1007/s00213-002-1175-2

APA. (2010). Ethical Principles of Psychologists and Code of Conduct. Washington, DC: APA. Available:

https://www.apa.org/ethics/code

Balasubramaniam, R.; Chawla, S.; Grace, A. & Huang; C. (2005). Caffeine-induced arrhythmias in murine hearts parallel changes in cellular Ca(2+) homeostasis. Amerian Jorunal of Physiology, 289(4), 1584–1593.

https://doi.org/10.1152/ajpheart.01250.2004

Barceló, E.; Navarro, C.; Gelves-Ospina, M.; Rodrigues, F.; Rosa, P.; Orozco, E. & Benítez, J. (2018). Funcionamiento ejecutivo y toma de decisiones al observar estímulos publicitarios con contenido sexual. Revista Latinoamericana de Hipertension, 13(5), 348–353.

http://saber.ucv.ve/ojs/index.php/rev_lh/article/view/15937

Beatty, J. & Lucero-Wagoner, B. (2000). The pupillary system Hillsdale, NJ: . Em J. Caccioppo, L. Tassinary, & G. Berntson, The Handbook of Psychophysiology. Cambridge University Press.

https://doi.org/10.3758/s13423-018-1432-y

Benjamim, C.; Kliszczewicz, B.; Garner, D.; Cavalcante, T.; Silva, A.; Santana, M. & Valenti, V. (2020). Is Caffeine Recommended Before Exercise? A Systematic Review To Investigate Its Impact On Cardiac Autonomic Control Via Heart Rate And Its Variability. Nutrients, 39(6), 563–573.

https://doi.org/10.3390/nu12082372

Bouffard, M. A. (2019). The Pupil. Continuum (Minneap Minn), (5), 1194–1214.

https://doi.org/10.1212/con.0000000000000771

Bradley, M. & Lang, P. (1994). Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59.

https://doi.org/10.1016/0005-7916(94)90063-9

Bradley, M.; Miccoli, L.; Escrig, M. & Lang; P. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology, 45(4), 602–607.

https://doi.org/10.1111/j.1469-8986.2008.00654.x

Bruce, M.; Scott, N.; Lader, M. & Marks; V. (1986). The psychopharmacological and electrophysiological effects of single doses of caffeine in healthy human subjects. British Journal of Clinical Pharmacology, 22(1), 81–87.

https://doi.org/10.1111/j.1365-2125.1986.tb02883.x

Brunyé, T.; Mahoney, C.; Lieberman, H. & Taylor; H. (2010). Caffeine modulates attention network function. Brain and Cognition, 72(2), 181–188.

https://doi.org/10.1016/j.bandc.2009.07.013

Cano-Marquinaa, A.; Tarínb, J. & Canoc, A. (2013). The impact of coffee on health. Maturitas, 75(1), 7–21.

https://doi.org/10.1016/j.maturitas.2013.02.002

Cappelletti, S. P. (2015). Caffeine: cognitive and physical performance enhancer or psychoactive drug? Current Neuropharmacology, 13(1), 71–88.

https://doi.org/10.2174/1570159X13666141210215655

Carvalho, J. & Rosa, P. (2020). Gender Differences in the Emotional Response and Subjective Sexual Arousal Toward Non-Consensual Sexual Intercourse: A Pupillometric Study. The Journal of Sexual Medicine, 17(10), 1865–1874.

https://doi.org/10.1016/j.jsxm.2020.06.018

Chivers, M.; Gerulf, R.; Latty, E. & Bailey, J. (2004). A sex difference in the specificity of sexual arousal. Psychological Science, 15, 736–744.

https://doi.org/10.1111/j.0956-7976.2004.00750.x

Corti, R.; Binggeli, C.; Sudano, I.; Spieker, L.; Hänseler, E.; Ruschitzka, F.; Chaplin, W. F.; Lüscher, T. F. & Noll, G. (2002). Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: role of habitual versus nonhabitual drinking. Circulation, 106(23), 2935–2940.

https://doi.org/10.1161/01.cir.0000046228.97025.3a

Echeverri, D.; Montes, F.; Cabrera, M.; Galán, A. & Prieto, A. (2010). Caffeine’s vascular mechanisms of action. International Journal of Vascular Medicine, (12), 1–10.

https://doi.org/10.1155/2010/834060

Esteves, P. & Rosa, P. J. (2019). Eye-Tracking – Uma técnica de ponta para investigar o desempenho e as emoções no Desporto. Em, J. I. Rato & A. Abreu, Neuropsicologia do Desporto e do Movimento Humano. Lisboa: Climepsi.

Goldberger, J. (1999). Sympathovagal balance: how should we measure it? American Journal Physiology, 276(4), 1273–1280.

https://doi.org/10.1152/ajpheart.1999.276.4.H1273

Gonzaga, L. A.; Vanderlei, C.; L.; Gomes, R. L. & Valenti, V. E. (2017). Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: a crossover study. Scientific Reports, 7(1), 14091.

https://doi.org/10.1038/s41598-017-14540-4

Gonzaga, L. A.; Vanderlei, L. C.; Gomes, R. L.; Garner, D. M. & Valenti, V. E. (2019). Involvement of Cardiorespiratory Capacity on the Acute Effects of Caffeine on Autonomic Recovery. Medicina, 55(5), 1–10.

https://doi.org/10.3390/medicina55050196

Graham, T. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports Med, 31(11), 785–807.

https://doi.org/10.2165/00007256-200131110-00002

Grant, C. & Ker, J. (2008). Autonomic response to exercise as measured by cardiovascular variability. South African Journal of Sports Medicine, 20(4), 102–108.

https://doi.org/10.17159/2413-3108/2008/v20i4a273

Greden, J. (1974). Anxiety or caffeinism: a diagnostic dilemma. The American Journal of Psychiatry, 131(10), 1089–1092.

https://ajp.psychiatryonline.org/doi/pdf/10.1176/ajp.131.10.1089

Grgic, J. (2018). Caffeine ingestion enhances Wingate performance: a meta-analysis. European Journal of Sport Science, 18(2), 219–225.

https://doi.org/10.1080/17461391.2017.1394371

Grgic, J. & Pickering, C. (2019). The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. Journal of Science and Medicine Sport, 22(3), 353–360.

https://doi.org/10.1016/j.jsams.2018.08.016

Grgic, J.; Trexler, E. T.; Lazinica, B. & Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 1–10.

https://doi.org/10.1186/s12970-018-0216-0

Griffiths, R. & Mumford, G. (1995). Caffeine: a drug of abuse? Em F. Bloom, & D. Kupfer, Psychopharmacology: The fourth generation of progress. New York: Raven Press.

https://doi.org/10.1089/jcr.2013.0016

Grosso, G.; Micek, A.; Castellano; S.; Pajak; A. & Galvano, F. (2016). Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies. Molecular Nutrition & Food Research, 60(1), 223–234.

https://doi.org/10.1002/mnfr.201500620

Höfer, I. & Bättig, K. (1993). Coffee consumption, blood pressure tonus and reactivity to physical challenge in 338 women. Pharmacology Biochemistry and Behavior, 44(3), 573–576.

https://doi.org/10.1016/0091-3057(93)90168-S

Höfer, I. & Bättig, K. (1994). Cardiovascular, behavioral, and subjective effects of caffeine under field conditions. Pharmacology Biochemistry and Behavior, 48(4), 899–908.

https://doi.org/10.1016/0091-3057 (94) 90198-8

Hewlett, P. & Wadsworth, E. (2012). Tea, coffee and associated lifestyle factors. British food Journal, 114(3), 1–10.

https://doi.org/10.1108/00070701211213500

Hibino, G.; Moritani, T.; Kawada, T. & Fushiki, T. (1997). Caffeine enhances modulation of parasympathetic nerve activity in humans: Quantification using power spectral analysis. Journal of Nutricion, 127(7), 1422–1427.

https://doi.org/10.1093/jn/127.7.1422

IBM SPSS Statistics. (version 20.0). Statistics software for engineers and scientists. [Statistics Software]. New York: IBM.

https://www.ibm.com/analytics/spss-statistics-software

Izzo, J.; Ghosal, A.; Kwong, T.; Freeman, R. & Jaenike, J. (1983). Age and prior caffeine use alter the cardiovascular and adrenomedullary responses to oral caffeine. American Journal of Cardiology, 52(7), 769–773.

https://doi.org/10.1016/0002-9149(83)90413-7

Knight, R.; Pagkalos, J.; Timmons, C. & Jose, R. (2015). Caffeine consumption does not have an effect on digital microvascular perfusion assessed by laser Doppler imaging on healthy volunteers: a pilot study. Jounal of Hand Surgery (European Volume), 40(4), 412–415.

https://doi.org/10.1177/1753193414549519

Koenig, J.; Jarczok, M.; Kuhn, W.; Morsch, K.; Schäfer, A.; Hillecke, T. & Thayer, J. (2013). Impact of Caffeine on Heart Rate Variability: A Systematic Review. Journal of Caffeine Research, 3(1), 22–37.

https://doi.org/10.1089/jcr.2013.0009

Lane, J.; Adcock, R.; Williams, R. & Kuhn, C. (1990). Caffeine effects on cardiovascular and neuroendocrine responses to acute psychosocial stress and their relationship to level of habitual caffeine consumption. Psychosomatic Medicine, 52(3), 320–336.

https://doi.org/10.1097/00006842-199005000-00006

Lane, J.; Pieper, C.; Phillips-Bute, B.; Bryant, J. & Kuhn, C. (2002). Caffeine affects cardiovascular and neuroendocrine activation at work and home. Psychosomatic Medicine, 64(4), 595–603.

https://journals.lww.com/psychosomaticmedicine/Abstract/2002/07000/Caffeine_Affects_Cardiovascular_and_Neuroendocrine.9.aspx

Lanini, J.; Fernandes, J. & Pompéia, S. (2016). Acute personalized habitual caffeine doses improve attention and have selective effects when considering the fractionation of executive functions. Human Psychopharmacology, 31(1), 29–43.

https://doi.org/10.1002/hup.2511

Liu, H. & Song, N. (2015). Multiple effects of caffeine on physiology. Medicine & Science in Sports & Exercise, 2(4), 114-115.

https://doi.org/10.1249/01.mss.0000177216.21847.8a

Lovallo, W.; Wilson, M.; Vincent, A.; Sung, B.; McKey, B. & Whitsett, T. (2004). Blood pressure response to caffeine: Incomplete tolerance with regular consumption. Hypertension, 43(4), 760–765.

https://doi.org/10.1161 / 01.HYP.0000120965.63962.93

Marães, V. (2010). Frequência cardíaca e sua variabilidade: análises e aplicações. Revista Andaluza de Medicina del Deporte, 3(1), 33–42.

https://www.elsevier.es/es-revista-revista-andaluza-medicina-del-deporte-284-articulo-frequencia-cardiaca-e-sua-variabilidade-X1888754610478033

Marôco, J. (2010). Análise Estatística com utilização do SPSS (3 ed.). Lisboa: Sílabo.

Mehta, A.; Jain, A.; Mehta, M. & Billie, M. (1997). Caffeine and cardiac arrhythmias. An experimental study in dogs with review of literature. Acta Cardiologica, 52(3), 273–283.

Melillo, P.; Bracale, M. & Pecchia, L. (2011). Nonlinear Heart Rate Variability features for real-life stress detection. Case study: Students under stress due to university examination. Biomedical Engineering Online, 10(1), 1–12.

https://doi.org/10.1186/1475-925X-10-96

Monda, M.; Viggiano, A.; Vicidomini, C.; Iannaccone, T., Tafuri, D. & De Luca, B. (2009). Espresso coffee increases parasympathetic activity in young, healthy people. Nutricion & Neuroscience, 12(1), 43–48.

https://doi.org/10.1179/147683009X388841

Nathelson, B. (1985). Neurocardiology in interdisciplinary area for the 80s. Archives of Neurology, 42(2), 178–184.

https://doi.org/10.1001/archneur.1985.04060020096022

Nehlig, A. (2010). Is caffeine a cognitive enhancer? Journal of Alzheimer’s Disease, 20(s1), 85–94.

https://doi.org/10.3233 / JAD-2010-091315

Nehlig, A.; Daval, J. & Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Research Reviews, 17(2), 139–179. https://doi.org/10.1016/0165-0173 (92) 90012-b

OpenSignalsPlux. (version 2.1.0). Software suite for real-time biosignals visualization. [Medical software]. Lisboa: Plux. Disponible en

http://biosignalsplux.com/

Partala, T. & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International Journal of Human-Computer Studies, 59(1-2), 185–198.

https://doi.org/10.1016/S1071-5819 (03) 00017-X

Paschoal, M.; Petrelluzzi, K. & Gonçalves, N. (2002). Estudo da variabilidade da frequência cardíaca em pacientes com doença pulmonar obstrutiva crônica. Revista de Ciências Médicas, 11(1), 27–37. Disponible en

http://periodicos.puc-campinas.edu.br/seer/index.php/cienciasmedicas/article/view/1304

Pelchovitz, D., Goldberger, J., Jeffrey, J., & Goldberger, M. (2011). Caffeine and cardiac arrhythmias: a review of the evidence. The American Journal of Medicine, 124(4), 284–289.

https://doi.org/10.1016/j.amjmed.2010.10.017

PLUX Wireless Biosignals. (2020). ICN PhysioKit. Lisbon: Plux.

https://plux.info/

Quinlan, P.; Lane, J.; Moore, K.; Aspen, J.; Rycroft, J. & O’Brien, D. (2000). The Acute Physiological and Mood Effects of Tea and Coffee: The Role of Caffeine Level. Pharmacology Biochemistry and Behavior, 66(1), 19–28.

https://doi.org/10.1016/s0091-3057(00)00192-1

Richardson, T.; Baker, J.; Thomas, P.; Meckes, C.; Rozkovec, A. & Kerr, D. (2009). Randomized control trial investigating the influence of coffee on heart rate variability in patients with ST-segment elevation myocardial infarction. QJM: Monthly Journal of the Association of Physicians, 102(8), 555–561.

https://doi.org/10.1093 / qjmed / hcp072

Rodrigues, F. (2015). Princípios de Neuromarketing: Neurociencia cognitive aplicada ao consumo, espaços e design. Viseu: PsicoSoma Publishers.

Rosa, P. (2017). Eye movement analysis and cognitive assessment: the use of comparative visual search tasks in a non-immersive VR application. Methods of Information in Medicine, 56(2), 112–116.

https://doi.org/10.3414/ME16-02-0006

Rosa, P.; Esteves, F. & Arriaga, P. (2015). Beyond traditional clinical measurements for screening fears and phobias. IEEE Transactions on Instrumentation and Measurement, 64(12), 3396–3403.

https://doi.org/10.1109/TIM.2015.2450292

Rosa, P.; Caires, C.; Costa, L.; Rodelo, L. & Pinto, L. (2014). Affective And Psychophysiological Responses To Erotic Stimuli: Does Color Matter? Em, P. Gamito & P. Rosa, I see me, you see me: inferring cognitive and emotional processes from gazing behavior (pp. 171–190). Newcastle: Cambridge Scholars Publishing.

Rosa, P.; Castrillón, M.; Castillo, H.; Piedrahita, M. & Díaz, B. (2018). Los movimientos oculares como medida de control ejecutivo en niños con trastorno por déficit de atención con hiperactividad. Revista Chilena de Neuropsicología, 13(1), 42–46. Recuperado de

http://www.rcnp.cl/dinamicos/articulos/345891-08_castrillon_rcnp.pdf

Rosa, P.; Gamito, P.; Oliveira, J.; Morais, D.; Pavlovic, M. & Smyth, O. (2016). Uso de eye tracking em realidade virtual não imersiva para avaliação cognitiva. Psicologia, Saúde & Doenças, 17(1), 23–31.

https://doi.org/10.15309/16psd170104

Rosa, P.; Gamito, P.; Oliveira, J.; Morais, D.; Pavlovic, M. & Smyth, O. (oct, 2015). Show me your eyes! The combined use of eye tracking and virtual reality applications for cognitive assessment. Em, H. M. Fardoun, REHAB’ 15: Proceedings of the 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques (pp- 135–138). ACM, Lisbon, Portugal.

https://doi.org/10.1145/2838944.2838977

Rosa, P.; Luz, F.; Júnior, R.; Oliveira, J.; Morais, D. & Gamito, P. (2020). Adaptive Non-Immersive VR Environment for Eliciting Fear of Cockroaches: A Physiology-Driven Approach Combined with 3D-TV Exposure. International Journal of Psychological Research, 13(2), 99–108.

https://doi.org/10.21500/20112084.4670

Samoggia, A. & Riedel, B. (2019). Consumers’ Perceptions of Coffee Health Benefits and Motives for Coffee Consumption and Purchasing. Nutrients, 3(11), 1–21.

https://doi.org/10.3390/nu11030653

Sarshin, A.; Naderi, A.; Cruz, C.; Feizolahi, F.; Forbes, S.; Candow, D.; Mohammadgholian, E.; Amiri, M.; Jafari, N.; Rahimi, A.; Alijani, E. & Earnest, C. (2020). The effects of varying doses of caffeine on cardiac parasympathetic reactivation following an acute bout of anaerobic exercise in recreational athletes. Journal of the International Society of Sports Nutrition, 1(17), 1–14.

https://doi.org/10.1186/s12970-020-00373-6

Schnuck, J.; Gould, L.; Parry, H.; Johnson, M.; Gannon, N.; Sunderland, K. & Vaughan, R. (2018). Metabolic effects of physiological levels of caffeine in myotubes. Journal Physiology Biochemistry, 74(1), 35–45.

https://doi.org/10.1007/s13105-017-0601-1

SMI Eye-Tracking System. (RED500). High-performance and high-speed remote eye tracker. [Eye tracker]. Teltow: SMI GmbH. Available:

https://www.crunchbase.com/organization/sensomotoric-instruments-smi

Smith, H. & Rogers, P. (2000). Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology, 152(2), 167–173.

https://doi.org/10.1007 / s002130000506

Smits, P.; Lenders, J. & Thien, T. (1990). Caffeine and theophylline attenuate adenosine-induced vasodilation in humans. Clinical Pharmacology & Therapeutics, 48(4), 410–418.

https://doi.org/10.1038/clpt.1990.169

Steinhauer, S.; Siegle, G.; Condray, R. & Pless, M. (2004). Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing. International Journal of Psychophysiology, 52(1), 77–86.

https://doi.org/10.1016/j.ijpsycho.2003.12.005

Stevens, J. (1992). Applied multivariate statistics for the social sciences (2 ed.). New Jersey: Erlbaum.

Sudano, I.; Binggeli, C.; Spieker, L.; Lüscher, T.; Ruschitzka, F.; Noll, G. & Corti, R. (2005). Cardiovascular effects of coffee: is it a risk factor? Progress in Cardiovascular Nursing, 20(2), 65–69.

https://doi.org/10.1111/j.0889-7204.2005.02477.x

Syce, D.; Veliath, S. & Krishnamurthy, N. (2014). The Effect Of Coffee On Heart Rate Variability. International Journal of Advanced Research, 2(1), 198–201.

https://www.journalijar.com/uploads/949_IJAR-2433.pdf

Tharion, E., Parthasarathy, S., & Neelakantan, N. (2009). Short-term heart rate variability measures in students during examinations. The National Medical Journal of India, 22(2), 63–66.

https://archive.nmji.in/archives/Volume-22/Issue-2/PDF-volume-22-issue-2/Volume-22-issue-2-Original_article-2.pdf

Tonkin, A. (2009). Autonomic Dysfunction: Drug-Induced. Em, L. Squire, Encyclopedia of Neuroscience (pp. 809–815). Oxford: Academic Press.

Wang, L., Shen, X., Wu, Y., & Zhang, D. (2016). Coffee and caffeine consumption and depression: A meta-analysis of observational studies. Australian & New Zealand Journal of Psychiatry, 50(3), 228–242.

https://doi.org/10.1177/0004867415603131

Wilhelm, B.; Stuiber, G.; Lüdtke, H. & Wilhelm, H. (2014). The effect of caffeine on spontaneous pupillary oscillations. Ophthalmic & Physiology Optics, 34(1), 73–81

https://doi.org/10.1111/opo.12094

Woo, J. & Kim, T. (2015). Gender plays significant role in short-term heart rate variability. Applied Psychophisiology and Biofeedback, 40(4), 297–303.

https://doi.org/10.1007/s10484-015-9295-8

Downloads

Download data is not yet available.
Published
2021-03-26
How to Cite
Rodrigues, F., Diogo, J., Rodrigues, C., Figueira, C., & Rosa, P. (2021). Does caffeine matter for arousal? Affective and autonomic responses induced by caffeine in coffee intake: evidence from a double-blind tasting task. Journal of Applied Cognitive Neuroscience, 2(1), e00143322. https://doi.org/10.17981/JACN.2.1.2021.02