Algoritmo de minimización restringida de la contaminación alrededor de zonas industriales
##plugins.themes.bootstrap3.article.main##
Resumen
Introducción- En este trabajo se consideran áreas grandes con fuentes de emisiones de contaminación que en la mayoría de casos llega muy lejos de las zonas industriales. Usando modelación, monitoreo o pronósticos en los algoritmos de optimización se pueden analizar y ajustar los parámetros de la propagación de la polución con el impacto negativo de las zonas industriales.
Objetivo- El objetivo es la optimización y validación del modelo propuesto utilizando tres subconjuntos de fuentes de contaminación (las que pueden ser modificadas, las que se pueden modificar hasta cierto punto y las que no se pueden modificar).
Metodología- Para la minimización se utilizó el procedimiento de Nelder-Mead de optimización clásica local [1] que mediante cambio de paso permite encontrar los extremos y además es útil para la optimización multiparamétrica.
Resultados- Los resultados obtenidos permiten: la elección de tamaño de zonas industriales; la ubicación de industrias con fuentes condicionadas y aquellas sin restricciones; límites de optimización según el número de iteraciones o según la integral de las emisiones y la valoración de las consecuencias económicas de la solución.
Conclusiones- El modelo matemático y algoritmo son relativamente sencillos para su aplicación y están abiertos para más complejidad.
Descargas
##plugins.themes.bootstrap3.article.details##

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los artículos publicados son de exclusiva responsabilidad de sus autores y no reflejan necesariamente las opiniones del comité editorial.
La Revista INGE CUC respeta los derechos morales de sus autores, los cuales ceden al comité editorial los derechos patrimoniales del material publicado. A su vez, los autores informan que el presente trabajo es inédito y no ha sido publicado anteriormente.
Todos los artículos están bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.