Estudio comparativo de las propiedades térmicas del aceite de ajonjolí y dos aceites minerales de diferente viscosidad

Resumen

Introducción: En los últimos años, la investigación y el desarrollo de biolubricantes a partir de aceites vegetales ha aumentado para minimizar el impacto en el medio ambiente de los derivados del petróleo.

Objetivo: En este trabajo, se realizó un estudio comparativo de las propiedades térmicas del aceite de sésamo con las de dos aceites minerales de viscosidad media y alta (360 y 255) libres de aditivos.

Método: La caracterización de los tres aceites se realizó mediante la técnica de espectroscopia infrarroja (FT-IR) y propiedades físicas como viscosidad cinemática, densidad, propiedades térmicas y oxidativas se determinaron mediante el análisis del escaneo de calorimetría diferencial (ECD).

Resultados: El aceite de sésamo tenía un punto de fluidez de - 14.67 ° C, temperatura más baja que para los aceites minerales 255 y 360, (- 4.29 ° C y - 6.89 ° C, respectivamente). El alto contenido de ácidos grasos insaturados (84.86%) podría ser responsable de este comportamiento. Los aceites fueron estables en temperaturas cercanas a 250 ° C y con atmósfera de nitrógeno. Los aceites minerales son más estables a la oxidación debido a su alto contenido de ácidos grasos con cadenas de hidrocarburos saturadas sin sitios oxidables.

Conclusiones: Sin embargo, la baja estabilidad del aceite de sésamo se debe al alto contenido de ácidos grasos insaturados, el uso de antioxidantes, aditivos o una modificación química de las cadenas insaturadas, esta propiedad podría ser mejorada para usar el aceite como lubricante.

Palabras clave: Aceite de sésamo, aceite mineral, punto de fluidez, temperatura de fusión, estabilidad térmica, estabilidad oxidativa, ECD

Referencias

[1] T. M. Panchal, A. Patel, D. T. M. Chauhan and J. V. Patel, "A methodological review on bio-lubricants from vegetable oil based resources," Renewable and Sustainable Energy Reviews, vol. 70, p. 65-70, 2017. https://doi.org/10.1016/j.rser.2016.11.105

[2] O. Ocheje, M. Matthew, A. Manase and E. Ifechukwu, "Optimization of the operating parameters for the extractive synthesis of biolubricant from sesame seed oil via response surface methodology," Egyptian Journal of Petroleum, vol. 27, no. 3, pp. 265-275, 2018. https://doi.org/10.1016/j.ejpe.2017.04.001

[3] J. McNutt and H. Quan, "Development of biolubricants from vegetable oils via chemical modification," Journal of Industrial and Engineering Chemistry, vol. 36, pp. 1-12, 2016. https://doi.org/10.1016/j.jiec.2016.02.008

[4] S. Gharby, H. Harhar, Z. Bouzoubaa, A. Asdabi, A. El Yadini and Z. Charrouf, "Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco," Journal of the Saudi Society of Agricultural Sciences, vol. 16, no. 2, pp. 105-111, 2017. https://doi.org/10.1016/j.jssas.2015.03.004

[5] S. Long-Kai, Z. Li, L. Rui-Jie, C. Ming, J. Qing-Zhe and W. Xing-Guo, "Chemical Characterization, Oxidative Stability, and In Vitro Antioxidant Capacity of Sesame Oils Extracted by Supercritical and Subcritical Techniques and Conventional Methods: A Comparative Study Using Chemometrics," European Journal of Lipid Science and Technology, vol. 120, no. 2, pp. 1-11, 2017. https://doi.org/10.1002/ejlt.201700326

[6] S. Sabarinath, P. Kumarapillai and R. Perikinalil, "Evaluation of physicochemical, thermal and tribological properties of sesame oil (Sesamum indicum L.): a potential agricultural crop base stock for eco-friendly industrial lubricants," Int. J. Agricultural Resources, Governance and Ecology, vol. 13, no. 1, pp. 77-90, 2017. https://doi.org/10.1504/IJARGE.2017.084037

[7] J. P. Ríos L., D. E. Salazar L. and C. Puente, "Diseño y contrucción de un equipo para la extracción de aceite de sésamo (Sesamum indicum) y nuez (Juglans regia)," 2018. [Online]. Available: http://dspace.espoch.edu.ec/bitstream/123456789/10505/1/96T00503.pdf [Accessed 2019].

[8] Y. Junpeng, Z. Qi, L. Xin, W. Xinsheng, L. Bing and Z. Wenxue, "Steam explosion technology based for oil extraction from sesame (Sesamum indicum L.) seed," Journal of the Saudi Society of Agricultural Sciences, vol. 18, no. 1, pp. 1-6, 2019. https://doi.org/10.1016/j.jssas.2016.10.003

[9] R. Carlton J., M. Pradeep L., J. Tien-Chien and L. Michael R., "The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants," Tribology International, vol. 90, pp. 123-134, 2015. https://doi.org/10.1016/j.triboint.2015.04.021

[10] M. Azhari, M. F. Tamar, N. R. Mat Nuri and M. R. Yusoff, "Physical property modification of vegetable oil as bio-lubricant using ZDDP," ARPN Journoal of Engineering and Applied Sciences, vol. 10, no. 15, pp. 6525-6528, 2015.

[11] W. M. Guezmil and S. M. Bensalah, "Effect of bio-lubrication on the tribological behavior of UHMWPE against M30NW stainless steel," Tribology International, vol. 94, pp. 550-559, 2016. https://doi.org/10.1016/j.triboint.2015.10.022

[12] Q. Baokun, Z. Qiaozhi, S. Xiaonan, W. Zhongjiang, L. Yang and J. Lianzhou, "Differential scanning calorimetry study-Assessing the influence of composition of vegetable oils on oxidation," Food Chemistry, vol. 194, pp. 601-607, 2016. https://doi.org/10.1016/j.foodchem.2015.07.148

[13] L. Honary and E. Richter, "Biobased Lubricants and Greases: Technology and Products," John Wiley & Sons, 2011. https://doi.org/10.1002/9780470971956

[14] W. W.-H., "The contents of lignans in commercial sesame oils of Taiwan and their changes during heating," Food Chem., vol. 104, no. 1, pp. 341-344, 2007. https://doi.org/10.1016/j.foodchem.2006.11.055

[15] M. T. Siniawski, N. Saniei, B. Adhikari and L. Doezema, "Influence of fatty acid composition on the tribological performance of two vegetable‐based lubricants," J. Synth. Lubr, vol. 24, no. 2, pp. 101-110, 2007. https://doi.org/10.1002/jsl.32

[16] M. R. Tiwari, K. K. Tiwari and S. D. Toliwal, "Studies on Thermal Stability of Palm -Sesame oil blends during Deep Fat Frying," vol. 73, p. 4, 2015.

[17] A. E. Delgado, R. G. García and W. A. Aperador, "Estudio del Poder Lubricante del Aceite de Ajonjolí con Adición de Nanopartículas de Cobre," Inf. Tecnológica, vol. 27, no. 6, pp. 175-184, 2016. https://doi.org/10.4067/S0718-07642016000600018

[18] P. Ghosh, M. Hoque and G. Karmakar, "Castor oil as potential multifunctional additive in the formulation of eco-friendly lubricant," Polymer Bulletin, vol. 75, no. 2, pp. 501-514, 2017. https://doi.org/10.1007/s00289-017-2047-6

[19] T. Yakubu, S. Albert, A. Salawu, M. Olutoye and O. M.M., "Vegetable oil based lubricants: Challenges and prospects," Tribology Online, vol. 14, no. 2, pp. 60-70, 2019. https://doi.org/10.2474/trol.14.60

[20] M. Menkiti, O. Ocholi, K. Oyoh and O. y Onukwuli, "Synthesis and Tribological Evaluation of Sesame OilBased Trimethylolpropane Ester," Journal of the Chinese Advanced Materials Society, vol. 3, no. 2, pp. 71-88, 2015. https://doi.org/10.1080/22243682.2015.1013154

[21] O. Gorkem, Y. Rusen M., T. Omer S., K. Salih and D. M. Zeki, "Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric," Food Control, vol. 82, pp. 212-216, 2017. https://doi.org/10.1016/j.foodcont.2017.06.034

[22] G. Karmakar, G. Pranab and S. Brajenda K., "Chemically Modifying Vegetable Oils to Prepare Green Lubricants," Lubricants, vol. 5, no. 4, p. 44, 2017. https://doi.org/10.3390/lubricants5040044

[23] G. Karmakar and P. Ghosh, "Soybean Oil as a Biocompatible Multifunctional Additive for Lubricating Oil," ACS Sustainable Chemistry & Engineering, vol. 3, no. 1, pp. 19-25, 2014. https://doi.org/10.1021/sc500685r

[24] J. N. Salih, B. M. A. Salimon and E. Yousif, "Thermo-oxidation, friction-reducing and physicochemical properties of ricinoleic acid based-diester biolubricants," Arab. J. Chem., vol. 10, pp. S2273-S2280, 2017. https://doi.org/10.1016/j.arabjc.2013.08.002

Descargas

La descarga de datos todavía no está disponible.

Acerca de los Autores

Anny Astrid Espitia Cubillos, Universidad Militar Nueva Granada Bogotá, (Colombia)

Anny Astrid Espitia Cubillos, has a BSc. degree in Industrial Engineering, a MSc in Industrial Engineering, and is associate professor on the Industrial Engineering Program at Universidad Militar Nueva Granada, Bogotá, Colombia.  https://orcid.org/0000-0002-4791-0250

Arnoldo Emilio Delgado-Tobón, Universidad Militar Nueva Granada. Bogotá, (Colombia)

Arnoldo Emilio Delgado Tobón, has a BSc. degree in Mechanical Engineering, a MSc in Mechanical Engineering, and is associate professor on the Mechatronic Engineering Program at Universidad Militar Nueva Granada and the Engineering Faculty of El Bosque University, Bogotá, Colombia. https://orcid.org/0000-0002-8743-8958

William Arnulfo Aperador Chaparro, Universidad Militar Nueva Granada. Bogotá, (Colombia)

William Arnulfo Aperador Chaparro, has a PhD. in Materials Engineering, a MSc in Mechatronic Engineering and is associate professor on the Mechatronic Engineering Program at Universidad Militar Nueva Granada, Bogotá, Colombia.  https://orcid.org/0000-0003-1778-0851

DCS curves showing the cooling of the oils studied
Publicado
2019-10-20
Cómo citar
Espitia Cubillos, A., Delgado-Tobón, A., & Aperador Chaparro, W. (2019). Estudio comparativo de las propiedades térmicas del aceite de ajonjolí y dos aceites minerales de diferente viscosidad. INGE CUC, 15(2). Recuperado a partir de https://revistascientificas.cuc.edu.co/ingecuc/article/view/2407