CFD analysis of the airflow behavior in the intake system of a low-displacement diesel engine



Palabras clave:

Motores Diésel, CFD, OpenFOAM, coeficiente de descarga, coeficiente de torbellino


Introduction− The airflow analysis for internal combustion engines (ICE) remains challenging for researchers due to the complexity of the flow interactions inside the cylinder. Different flow characteristics such as turbulence, instability, periodicity, and non-stationary conditions required advanced methods to describe the overall behavior. The present study proposed the implementation of a turbulence model through Computational Fluid Dynamics (CFD) analysis that further simplifies the airflow phenomena for low-displacement engines while describing the parameters that influence the engine efficiency and emissions.

Objective− The study aims to analyze the airflow behavior in the intake system of a low-displacement diesel engine with natural aspiration through an experimental model adjusted by CFD analysis.

Methodology− The analysis of the airflow behavior in the intake system of the engine was carried out with an experimental model that describes the airflow characteristics. This model is adjusted via CFD analysis in OPENFOAM®, which determines both discharge (DC) and swirl (SC) coefficients to describe the flow interactions in the intake system.

Results− The CD values ranged between 0 to 0.5, indicating that this engine can displace 50% of the ideal airflow with a valve diameter of 30.5 mm and a chamber volume of 0.3 L. In contrast, the SC, for a variable reference area, ranged from 0.3 to 0.19, stating that the engine experiences less airflow displacement, specifically 11% of the theoretical capacity as the mass flow increases for each valve lift.

Conclusions− In conclusion, the methodology implemented in the study showed that for rotatory regimes of 3000 rpm and 3400 rpm, a concrete vortex is generated with velocity values between 10 and 20 m/s in the peripherical region, which ensures the airflow rotation with vorticity inside the cylinder. At 3400 rpm, the SC value increments are compared to other regimes when the end of the valve lift distance is reached. Thus, it can be verified that under this regime, the optimal vorticity generation is achieved, which contributes to reduce emissions and boost the global efficiency of the engine.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Carlos Santos, Universidad del Atlántico, Barranquilla (Colombia)


Luis Perez, Universidad del Atlántico. Barranquilla, (Colombia)


Jorge Duarte Forero, Universidad del Atlántico. Barranquilla, (Colombia)

Docente Investigador del programa de Ingeniería Mecánica de la Universidad del Norte.


H. F. O. M. F. A. K. Yasin Varol, «CFD Modeling of heat transfer and fluid flow inside a pent-roof type combustion,» International Communications in Heat and Mass Transfer, nº 0735-1933, p. 10, 2010.

S. Z. H. W. S. H. Shuisheng JIANG*, «Parameter analysis of diesel helical intake port numerical desing,» Elsevier, pp. 558-563, 2012.

V. G. B. Jayashankara, «Effect of fuel injection timing and intake pressure on the performance of DI diesel Engine - A parametric study using CFD,» Elservier, nº 0196-8904, p. 14, 2009.

G. Kalghatgi, «Developments in internal combustion engines and implications for combustion science and future transport fuels,» Elsevier, nº 1540-7489, p. 15, 2014.

A. Gil, Modelado tridimensional del flujo de aire en el cilindro de motores diesel de inyeccion directa, Valencia: Reverte, 2007.

M. S, Erzeugung von drehbewegungen der luft in den zylindern schnellaufender, 1951.

T. G, «Entwicklungsarbeiten an ventilkanälen on viertakt Diesel Motoren.,» Österreichische Ingenieur Zeitschrfit, vol. 9, p. 292, 1965.

T. Uzkan, C. Borgnakke y T. Morel, «Characterization of Flow produced by a high-swirl inlet port,» SAE PAPERS, vol. 1, nº 0148-7191, p. 16, 1983.

M. M. F. M. Jesus Morea-Roy, «Simulacion numerica del ciclo operativo de un motor de encendido provocado,» Revista internacional de metodos numericos para calculo y diseño en ingenieria , vol. 15, nº 0213-1315, pp. 207-216, 1999.

A. R. R. M. S. A. D. R. M. Abdul Rahiman, «CFD Analysis of flow field development in a direct injection diesel engine with different manifolds,» American Journal of Fluid Dynamics , nº 09745645, p. 12, 2014.

Y. N. S.-P. S. M. P. Y. A. G. V. S. J. Rajesh Holkar, «Numerical simulation of steady flow through engine intake system using CFD,» IOSR Journal of mechanical and Civil Engineering , nº 2278-1684, p. 16, 2015.

J. v. P. Soriano, Movimiento del aire en motores diesel de inyeccion directa, Valencia: Universidad Politecnica de Valencia, 1997.

T. G. E., «Derivation of the formulas for the evaluation of stationary flow measurements,» AVL-FA-Report Nº. 463, 1978.

Thien.G., «Entwicklungsarbeiten an Ventilkanalen von Viertakt Dieselmotoren,» Ostereichiche Ingenieur Zeitschrift, vol. 9, p. 292, 1965.

D. J. Dent J., «Air Motion in a Four-Stroke Direct Injection Diesel Engine,» IME, vol. 188, nº 21, pp. 269-280, 1974.

K. J. C. Davis G. C., «Comparison of model calculations and experimental measurements of the,» SAE, nº 790290, 1979.

R. C. Engineers, «Information to clients on Ricardo’s Laser-Doppler velocimeter,» Ricardo Engineering Report, 1976.

A. M. H. H. Murakami A., «Swirl Measurements and Modelling in Direct Injection Diesel Engines,» SAE, nº 880385, 1988.

R. L. d. S. J. L. F. d. Azevedo2, «Industrial airflows numerical simulation in ducts and devices using all-speed algorithm in structured meshes,» Ingeniare. Revista chilena de ingeniería, vol. 26, nº 2, p. 10, 2008.

L. R. Collado, M. C. Contreras, E. R. Malaver y L. Patiño, «Análisis numérico del comportamiento del aire en un sistema de distribución de aire acondicionado empleando los modelos de turbulencia K-E, RNG K-E y el modelo de las tensiones de Reynolds,» Ingeniare Revista chilena de ingeniería, vol. 16, nº 2, p. 13, 2008.

H. B. L. A. C. B. D. R. a. D. O. M. G. P. Blair, «Coefficients of Discharge at the,» SAE TECHNICAL PAPER SERIES, nº 0148-7191, p. 17, 1995.

D. J. Dent.J., «Air Motion in a Four-Stroke Direct Injection Diesel Engine,» IME, vol. 188, pp. 269-280, 1974.

N. T. K. H. W. T. S. Y. Fujimoto H., «A study on the formation of vertical vortex in the cylinder of an I.C engine using CFD: Effect of intake valve closing timing,» JSAE , vol. 16, pp. 349-355, 1995.

M. X. P. J. V. G. Benajes J., «A threedimensional calculation of the flow in a DI Diesel engine with variable swirl PORTS,» de Automotive Transportation Conference & Exposition, Barcelona, 2001.

S. H. M. P. a. G. W. Sebastian Zirngibl, «Experimental and Simulative Approaches for the determination of the discharge coefficients for inlet and exhaust valves and ports in internal combustion engines, » SAE International, nº 0148-7191, p. 16, 2017.

S. F. Wang y B. E. Milton, «Investigation of the Helical Inlet Port,» SAE TECHNICAL PAPER SERIES, vol. 1, nº 0148-7191, p. 12, 1998.

G. C. a. S. F. G. M. Bianchi, «Turbulence Modelling in CFD Simulation of,» SAE TECHNICAL PAPERS SERIES, nº 0148-7191, p. 20, 2002.

T. G, «A new method of investigation of swirl ports,» SAE, nº 770404, 1977.

L. A. S. a. R. D. Reitz, «Assessment of Diesel Engine Size-Scaling Relationships,» SAE International, vol. 1, nº 0148-7191, p. 21, 2007.

I. G. I. SAS, «igihm,» 12 08 2019. [En línea]. Available:

P. W. S. a. C. J. Rutland, «Modeling the Effects of Valve Lift Profile on Intake Flow and Emissions Behavior in a DI Diesel Engine,» SAE International, vol. 1, nº 0148-7191, p. 16, 1995.

J. X. A. F.Payri, «CFD modeling of the in-cylinder flow in direct-injection Diesel engines,» elzevier, vol. 33, nº 8, pp. 995-1021, 2004.

K. M. S. J. V. K. G. A. M. S. &. A. T. Abhilash M Bharadwaj, «Study of Swirl and Tumble Motion using CFD,» International Journal on Theoretical and Applied Research in Mechanical Engineering, vol. 2, nº 1, 2013.

L. R. S. a. R. D. Reitz, «An Experimental Investigation into Diesel Engine Size-Scaling Parameters,» SAE International, vol. 1, nº 01-1124, p. 17, 2009.

Y. S. a. R. D. Reitz, «Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales,» SAE International, vol. 1, nº 0148-7191, p. 21, 2008.

C.-W. L. a. R. D. R. Michael J. Tess, «Diesel Engine Size Scaling at Medium Load without EGR,» SAE International, vol. 1, nº 01-1384, p. 17, 2011.

L. A. a. P. G. Massimo Masi, «Measurements of the Intake and In-Cylinder Flow Field to investigate the reliability of CFD Steady-state simulation for actual engines,» SAE INTERNATIONAL, nº 0148-7191, p. 15, 2015.

T.-W. K. O. G. R. O. G. J. P. N. Xiaofeng Yang, «In-Cylinder Flow Correlations between steady flow bench and motored engine using computational fluid dynamics,» ASME Papers, vol. 139, nº 072802-8, p. 8, 2017.

C. S. T. A. R. R. B.V.V.S.U. Prasad, «High swirl-inducing piston bowls in small diesel engines for emission reduction,» ELSEVIER, vol. 88, pp. 2355-2367, 2011.

A. C. a. F. M. Michele Battistoni, «Steady and Transient Fluid Dynamic Analysis of the tumble and swirl evolution on a 4V engine with independent intake valves action,» SAE Techical papers, nº 01-2392, p. 18, 2008.

S. A.-E. A. A. E.-M. M. N. A. Abd El-Sabor Mohamed, «Effect of shroud and orientation angles of inlet valve on flow characteristic through helical-spiral inlet port in diesel engine,» ASME , nº 10.1115/1.4036381, p. 23, 2017.




Cómo citar

Santos, C., Perez, L., & Duarte Forero, J. (2020). CFD analysis of the airflow behavior in the intake system of a low-displacement diesel engine. INGE CUC, 16(2), 285–298.