Performance of biodiesel production by means of Ultrasonic Transesterification

Resumen

Introducción- En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel, el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio.

Objetivo- Evaluar la producción de biodiesel por medio de ultrasonido, lo que lleva a mejorar el tiempo de respuesta y la eficiencia de la reacción, con respecto al método convencional que usa solo temperatura.

Metodología- En el proceso de transesterificación, se utilizan aceite de ricino, metanol e hidróxido de potasio; obteniendo biodiesel y glicerina. Se aplicó un diseño factorial con dos niveles de tiempo de tránsito, temperatura de mezcla e intensidad de ultrasonido en un reactor a escala instrumentado para controlar dichas variables.

Resultados- En las pruebas, se obtuvieron valores cercanos al valor estequiométrico de referencia de la reacción. La estadística indica un comportamiento normal de los datos y lo identifica como un factor de incidencia en la eficiencia de la reacción a la intensidad del ultrasonido; con respecto al tiempo de respuesta de la reacción, la temperatura de mezcla y la intensidad del ultrasonido.

Conclusiones- La eficiencia de la reacción con respecto a los factores estudiados, solo depende de que el ultrasonido obteniendo hasta el 95.7% del valor estequiométrico; y el tiempo de respuesta de la reacción depende de la temperatura y el ultrasonido, obteniendo tiempos de formación del producto cuatro veces más rápidos.

Palabras clave: Biodiesel, Eficiencia, Factor de incidencia, Temperatura de mezcla, Ultrasonido

Referencias

F. C. De Oliveira and S. T. Coelho, “History, evolution, and environmental impact of biodiesel in Brazil: A review,” Renew. Sustain. Energy Rev., vol. 75, pp. 168–179, 2017.

https://doi.org/10.1016/j.rser.2016.10.060

M. Mubarak, A. Shaija, and T. V Suchithra, “A review on the extraction of lipid from microalgae for biodiesel production,” Algal Res., vol. 7, pp. 117–123, 2015.

https://doi.org/10.1016/j.algal.2014.10.008

H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim, and H. V Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” Renew. Sustain. energy Rev., vol. 67, pp. 1225–1236, 2017.

https://doi.org/10.1016/j.rser.2016.09.036

P. Verma, M. P. Sharma, and G. Dwivedi, “Impact of alcohol on biodiesel production and properties,” Renew. Sustain. Energy Rev., vol. 56, pp. 319–333, 2016.

https://doi.org/10.1016/j.rser.2015.11.048

B. Bharathiraja, M. Chakravarthy, R. R. Kumar, D. Yuvaraj, J. Jayamuthunagai, R. P. Kumar, and S. Palani, “Biodiesel production using chemical and biological methods--A review of process, catalyst, acyl acceptor, source and process variables,” Renew. Sustain. Energy Rev., vol. 38, pp. 368–382, 2014.

https://doi.org/10.1016/j.rser.2014.05.084

I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt. J. Pet., vol. 25, no. 1, pp. 21–31, 2016.

https://doi.org/10.1016/j.ejpe.2015.06.007

A. A. Mancio, K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leão, R. de Souza, M. E. Araújo, L. E. P. Borges, and others, “Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind. Crops Prod., vol. 91, pp. 32–43, 2016.

https://doi.org/10.1016/j.indcrop.2016.06.033

A. H. M. Fauzi, N. A. S. Amin, and R. Mat, “Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study,” Appl. Energy, vol. 114, pp. 809–818, 2014.

https://doi.org/10.1016/j.apenergy.2013.10.011

O. Farobie and Y. Matsumura, “A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions,” Bioresour. Technol., vol. 191, pp. 306–311, 2015.

https://doi.org/10.1016/j.biortech.2015.04.102

P. Verma and M. P. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” Renew. Sustain. Energy Rev., vol. 62, pp. 1063–1071, 2016.

https://doi.org/10.1016/j.rser.2016.04.054

V. K. Aniya, R. K. Muktham, K. Alka, and B. Satyavathi, “Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study,” Fuel, vol. 161, pp. 137–145, 2015.

https://doi.org/10.1016/j.fuel.2015.08.042

L. S. Keong, D. S. Patle, S. R. Shukor, and Z. Ahmad, “Biodiesel Production using Heterogeneous Catalyst in CSTR: Sensitivity Analysis and Optimization,” in IOP Conference Series: Materials Science and Engineering, 2016, vol. 121, no. 1, p. 1.2007.

doi:10.1088/1757-899X/121/1/012007

H. Saroso, “Study On Reaction Kinetics Transesterification Coconut Oil By Using The Catalyst NaOH PLUG Flow Reactor (PFR),” Int. J. Eng. Innov. Res., vol. 5, no. 3, p. 217, 2016.

M. del C. Ortiz Tapia, P. García Alamilla, L. M. Lagunes Gálvez, M. I. Arregoitia Quezada, R. García Alamilla, and M. A. León Chávez, “Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente,” Acta Univ., vol. 26, no. 5, pp. 3–10, 2016.

http://dx.doi.org/10.15174/au.2016.910

K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ., vol. 61, no. 6, p. 494, 1984.

https://doi.org/10.1021/ed061p494

H. D. Inurreta Aguirre, E. García Pérez, J. Uresti Gil, J. P. Martínez Dávila, and H. Ortiz Laurel, “Potencial para producir Jatropha curcas L. como materia prima para biodiésel en el estado de Veracruz,” Trop. Subtrop. Agroecosystems, vol. 16, no. 3, 2013.

M. Kouzu and J. Hidaka, “Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review,” Fuel, vol. 93, pp. 1–12, 2012.

https://doi.org/10.1016/j.fuel.2011.09.015

N. Sharma, U. K. Sharma, and E. V der Eycken, “Microwave-Assisted Organic Synthesis: Overview of Recent Applications,” Green Tech. Org. Synth. Med. Chem., pp. 441–468, 2018.

https://doi.org/10.1002/9781119288152.ch17

M. De Bruyn, V. L. Budarin, G. S. J. Sturm, G. D. Stefanidis, M. Radoiu, A. Stankiewicz, and D. J. Macquarrie, “Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor,” J. Am. Chem. Soc., vol. 139, no. 15, pp. 5431–5436, 2017.

https://doi.org/10.1021/jacs.7b00689

J. M. B. Sánchez, “Efecto del Hexano y la concentración de metanol sobre la transesterificación de aceite crudo de palma utilizando Na2CO3 como catalizador,” Rev. CITECSA, vol. 8, no. 13, pp. 15–23, 2017.

H. Hamze, M. Akia, and F. Yazdani, “Optimization of biodiesel production from the waste cooking oil using response surface methodology,” Process Saf. Environ. Prot., vol. 94, pp. 1–10, 2015.

https://doi.org/10.1016/j.psep.2014.12.005

J. M. Marchetti, V. U. Miguel, and A. F. Errazu, “Possible methods for biodiesel production,” Renew. Sustain. energy Rev., vol. 11, no. 6, pp. 1300–1311, 2007.

https://doi.org/10.1016/j.rser.2005.08.006

V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng, and N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustain. Chem. Process., vol. 1, no. 1, p. 5, 2013.

https://doi.org/10.1186/2043-7129-1-5

J. Luo, Z. Fang, and R. L. Smith Jr, “Ultrasound-enhanced conversion of biomass to biofuels,” Prog. Energy Combust. Sci., vol. 41, pp. 56–93, 2014.

https://doi.org/10.1016/j.pecs.2013.11.001

T. Issariyakul and A. K. Dalai, “Biodiesel from vegetable oils,” Renew. Sustain. Energy Rev., vol. 31, pp. 446–471, 2014.

https://doi.org/10.1016/j.rser.2013.11.001

V. B. Veljković, I. B. Banković-Ilić, and O. S. Stamenković, “Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification,” Renew. Sustain. Energy Rev., vol. 49, pp. 500–516, 2015.

https://doi.org/10.1016/j.rser.2015.04.097

U. Schuchardt, R. Sercheli, and R. M. Vargas, “Transesterification of vegetable oils: a review,” J. Braz. Chem. Soc., vol. 9, no. 3, pp. 199–210, 1998.

http://dx.doi.org/10.1590/S0103-50531998000300002

C. A. G. Quispe, C. J. R. Coronado, and J. A. Carvalho Jr, “Glycerol: production, consumption, prices, characterization and new trends in combustion,” Renew. Sustain. Energy Rev., vol. 27, pp. 475–493, 2013.

https://doi.org/10.1016/j.rser.2013.06.017

S. M. Palash, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. R. Fattah, and A. Sanjid, “Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh,” Energy Convers. Manag., vol. 91, pp. 149–157, 2015.

https://doi.org/10.1016/j.enconman.2014.12.009

J. K. Poppe, C. R. Matte, M. do C. R. Peralba, R. Fernandez-Lafuente, R. C. Rodrigues, and M. A. Z. Ayub, “Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases,” Appl. Catal. A Gen., vol. 490, pp. 50–56, 2015.

https://doi.org/10.1016/j.apcata.2014.10.050

A. K. Azad, M. G. Rasul, M. M. K. Khan, S. C. Sharma, and M. A. Hazrat, “Prospect of biofuels as an alternative transport fuel in Australia,” Renew. Sustain. Energy Rev., vol. 43, pp. 331–351, 2015.

https://doi.org/10.1016/j.rser.2014.11.047

A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki, and S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” Renew. Sustain. energy Rev., vol. 16, no. 4, pp. 2070–2093, 2012.

https://doi.org/10.1016/j.rser.2012.01.003

J. F. Florez Marulanda and D. R. Ortega Alegria, “Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification,” Dyna, vol. 86, no. 211, pp. 75–83, 2019.

K. S. Suslick, “The chemical effects of ultrasound,” Sci. Am., vol. 260, no. 2, pp. 80–86, 1989.

D. C. Montgomery, Diseño y análisis de experimentos. Limusa Wiley, 2008.

W. M. Mendenhall, T. L. Sincich, and N. S. Boudreau, Statistics for Engineering and the Sciences, Student Solutions Manual. Chapman and Hall/CRC, 2016.

https://doi.org/10.1201/b19628

M. Berrios, M. C. Gutiérrez, M. A. Martín, and A. Martín, “Application of the factorial design of experiments to biodiesel production from lard,” Fuel Process. Technol., vol. 90, no. 12, pp. 1447–1451, 2009.

G. Vicente, A. Coteron, M. Martinez, and J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Ind. Crops Prod., vol. 8, no. 1, pp. 29–35, 1998.

A. M. Medeiros, Ê. R. M. Santos, S. H. G. Azevedo, A. A. Jesus, H. N. M. Oliveira, and E. M. B. D. Sousa, “Chemical interesterification of cotton oil with methyl acetate assisted by ultrasound for biodiesel production,” Brazilian J. Chem. Eng., vol. 35, no. 3, pp. 1005–1018, 2018.

S. B. A. V. S. Lakshmi, N. S. Pillai, M. S. B. K. Mohamed, and A. Narayanan, “Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al 2 O 3 as heterogeneous catalyst: A comparative study of RSM and ANN optimization,” Brazilian J. Chem. Eng., pp. 1–18, 2020.

M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga, and C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind. Eng. Chem. Res., vol. 49, no. 19, pp. 8935–8941, 2010.

Descargas

La descarga de datos todavía no está disponible.
Publicado
2021-04-11
Cómo citar
Flórez Marulanda, J., & Ortega Alegría, D. (2021). Performance of biodiesel production by means of Ultrasonic Transesterification. INGE CUC, 17(2). https://doi.org/10.17981/ingecuc.17.2.2021.06