Búsqueda de jurisprudencia en Colombia basada en procesamiento de lenguaje natural (NLP) y Lynked Data

Autores/as

DOI:

https://doi.org/10.17981/ingecuc.16.2.2020.22

Palabras clave:

Recuperación de documentos judiciales, procesamiento de lenguaje natural judicial, evaluación del sistema,, resumen automatizado

Resumen

Introduction: Within requirements elicitation, stakeholders generally fail to articulate interoperability requirements (IR) according to business needs, because organizations focus on technical aspects of solutions instead of systematically conducting a holistic analysis of the interoperability and its relationship with aspects of the business. Objective: Describe a framework that guides from the business perspective, the capture and specification of IR that can occur between the systems that make up the processes of an organization. Methodology: The action research method was used to define and apply each of the components of the proposed framework based on four research cycles and three problem-solving cycles in which the case study technique was applied. Results: The framework is made up of four components, a set of heuristics to identify IR, a model that describes the attributes that constitute interoperability at the business level, a process that guides the capture of IR, and a guide to specifying IR. On the other hand, IR from a business perspective is proposed as a starting point for the development of the aspects that must be addressed at the lower levels of interoperability corresponding to processes, services and data. Conclusions: Through three case studies, the experiences in the application of the proposal in two organizations are described. Initial results show that the framework is useful, practical and appropriate for addressing IR elicitation.

    

Key words: organization; organizational systems; elicitation; business; interoperability.  

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. V. G. Gil, “Aproximaciones a la historia del derecho en {Colombia},” no. 22, p. 26, 2012.

M. R. Segura, “PRECEDENTE JURISPRUDENCIAL VS UNIFICACIÓN JURISPRUDENCIAL,” Minist. Justicia y del Derecho Colomb., 2011.

Rama Judicial del Poder Publico, “Sistema de Consulta de Jurisprudencia,” Consulta temática simultánea en las Altas Corporaciones. 2011.

C. de Estado, “Consejo de Estado,” Consulta de Jurisprudencia. 2015.

J. V Goytisolo, “El razonamiento Judicial,” An. la Real Acad. Jurisprud. y Legis., vol. 39tn editi, no. Dykinson, Ed., 2009.

A. Wyner, R. Mochales-Palau, M.-F. Moens, and D. Milward, “Approaches to Text Mining Arguments from Legal Cases,” in Semantic Processing of Legal Texts: Where the Language of Law Meets the Law of Language, E. Francesconi, S. Montemagni, W. Peters, and D. Tiscornia, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 60–79.

G. Venturi, “Legal Language and Legal Knowledge Management Applications,” in Semantic Processing of Legal Texts: Where the Language of Law Meets the Law of Language, E. Francesconi, S. Montemagni, W. Peters, and D. Tiscornia, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 3–26.

L. O. de Colla Furquim and V. L. S. de Lima, “Clustering and Categorization of Brazilian Portuguese Legal Documents,” in Computational Processing of the Portuguese Language, 2012, pp. 272–283.

N. Zong, S. Lee, J. Ahn, and H. G. Kim, “Supporting inter-topic entity search for biomedical Linked Data based on heterogeneous relationships,” Comput. Biol. Med., vol. 87, no. December 2016, pp. 217–229, 2017, doi: 10.1016/j.compbiomed.2017.05.026.

A. J. C. Trappey, C. V. Trappey, J. L. Wu, and J. W. C. Wang, “Intelligent compilation of patent summaries using machine learning and natural language processing techniques,” Adv. Eng. Informatics, vol. 43, no. June 2019, 2020, doi: 10.1016/j.aei.2019.101027.

avi K. V. y K. Raghuveer, “Agrupación de documentos legales mediante la asignación de dirichlet latente,” Rev. Int. Sist. Inf. Apl., vol. 2, no. 6, pp. 27–33, 2012.

G. Li, Z. Wang, and Y. Ma, “Combining Domain Knowledge Extraction With Graph Long Short-Term Memory for Learning Classification of Chinese Legal Documents,” IEEE Access, vol. 7, pp. 139616–139627, 2019, doi: 10.1109/ACCESS.2019.2943668.

A. Ordoñez and C. C. Ordoñez Quintero, “Sistema de Indexación de Documentos Jurisprudenciales Soportado en Inteligencia Artificial,” Risti, vol. E22, no. E22, pp. 41–52, 2019, [Online]. Available: https://www.researchgate.net/publication/337739514_Sistema_de_Indexacion_de_Documentos_Jurisprudenciales_Soportado_en_Inteligencia_Artificial.

K. Singh, I. Lytra, A. S. Radhakrishna, S. Shekarpour, M. E. Vidal, and J. Lehmann, “No one is perfect: Analysing the performance of question answering components over the DBpedia knowledge graph,” J. Web Semant., vol. 65, p. 100594, 2020, doi: 10.1016/j.websem.2020.100594.

V. N. Gudivada and K. Arbabifard, “Open-Source Libraries, Application Frameworks, and Workflow Systems for NLP,” in Handbook of Statistics, 2018.

P. N. Mendes, M. Jakob, A. Garc’ia-Silva, and C. Bizer, “DBpedia spotlight: shedding light on the web of documents,” in Proceedings of the 7th international conference on semantic systems, 2011, pp. 1–8.

C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,” Int. J. Semant. Web Inf. Syst., vol. 5, no. 3, pp. 1–22, 2009, doi: 10.4018/jswis.2009081901.

O. Rodríguez Rocha et al., "Semantic Annotation and Classification In Practice," IT Prof., vol. 17, no. 12-IT-Enabled Business Innovation, pp. 33–39, 2015, doi: http://dx.doi.org/10.1109/MITP.2015.29.

C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Information Retrieval. Cambridge: Cambridge University Press, 2008.

R. Baeza-Yates and B. Ribeiro-Neto, “Modern information retrieval,” New York, 1999, doi: 10.1080/14735789709366603.

Publicado

2020-11-12

Cómo citar

Ordoñez, H. A., Ordoñez, C. C., Ordoñez, J. A., & Arturo Urbano, F. (2020). Búsqueda de jurisprudencia en Colombia basada en procesamiento de lenguaje natural (NLP) y Lynked Data. INGE CUC, 16(2), 277–284. https://doi.org/10.17981/ingecuc.16.2.2020.22

Dimensions

Altmetrics

Artículos más leídos del mismo autor/a